Advertisement

Journal of Electroceramics

, Volume 41, Issue 1–4, pp 43–49 | Cite as

Low temperature sintering of lead–free (Bi1/2Na1/2)TiO3-SrTiO3-BiFeO3 piezoelectric ceramics by adding excess CuO

  • Chang-Heon Lee
  • Hyoung-Su Han
  • Seong Hyun Kim
  • Thi Hinh Dinh
  • Chang Won Ahn
  • Jae-Shin LeeEmail author
Article
  • 134 Downloads

Abstract

This study examined the microstructures, crystal structures, and electrical properties of 0.01 mol CuO–added (1–x)(Bi1/2Na1/2)TiO3xSrTiO3–2BiFeO3 (BNST100x–2BF, x = 0.20 ~ 0.28) ceramics synthesized at two different sintering temperatures. The sintering temperature of the BNST100x–2BF ceramics could be decreased from 1175 °C to 1000 °C by adding a 0.01 mol CuO excess. Low–temperature sintering led to a decrease in average grain size. The dielectrics, polarization hysteresis (PE), switching current, and electric–field induced strain (SE) curves changed with increasing SrTiO3 content and decreasing sintering temperature. Interestingly, the highest reduction ratio of d33* was calculated to be somewhere in between the high–temperature sintered and low–temperature sintered BNST26–2BF ceramics. These results were attributed to the difference in the stabilized relaxor state and closely related to the electric field–induced reversible phase transition from the relaxor and ferroelectrics.

Keywords

Lead-free Piezoelectrics Low temperature sintering Relaxor 

Notes

Acknowledgements

This study was supported financially by the 2016 Research Fund of University of Ulsan.

References

  1. 1.
    C.A. Randall, A. Kelnberger, G.Y. Yang, R.E. Eitel, T.R. Shrout, J. Electroceram. 14(3), 177–191 (2005)CrossRefGoogle Scholar
  2. 2.
    E. Sapper, A. Gassmann, L. Gjødvad, W. Jo, T. Granzow, J. Rödel, J. Eur. Ceram. Soc. 34(3), 653–661 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35(6), 1659–1681 (2015)CrossRefGoogle Scholar
  4. 4.
    C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J.S. Son, C.W. Ahn, W. Jo, J. Mater. 2, 1 (2015)Google Scholar
  5. 5.
    W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, J. Electroceram. 29(1), 71–93 (2012)CrossRefGoogle Scholar
  6. 6.
    K. Sakata, Y. Masuda, Ferroelectrics 7(1), 347–349 (1974)CrossRefGoogle Scholar
  7. 7.
    W. Krauss, D. Schütz, F.A. Mautner, A. Feteira, K. Reichmann, J. Eur. Ceram. Soc. 30(8), 1827–1832 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Acosta, W. Jo, J. Rödel, D.C. Lupascu, J. Am. Ceram. Soc. 97(6), 1937–1943 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Acosta, L.A. Schmitt, L. Molina-Luna, M.C. Scherrer, M. Brilz, K.G. Webber, M. Deluca, H.-J. Kleebe, J. Rödel, W. Donner, D. Johnson, J. Am. Ceram. Soc. 98(11), 3405–3422 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Koruza, V. Rojas, L. Molina-Luna, U. Kunz, M. Duerrschnabel, H.-J. Kleebe, M. Acosta, J. Eur. Ceram. Soc. 36(4), 1009–1016 (2016)CrossRefGoogle Scholar
  11. 11.
    T.-H. Song, C.A. Randall, J. Electroceram. 10(1), 39–46 (2003)CrossRefGoogle Scholar
  12. 12.
    S. Kawada, M. Kimura, Y. Higuchi, H. Takagi, Appl. Phys. Express 2(11), 111401 (2009)CrossRefGoogle Scholar
  13. 13.
    B. Malič, J. Koruza, J. Hreščak, J. Bernard, K. Wang, J. Fisher, A. Benčan, Materials 8(5449), 8117–8146 (2015)CrossRefGoogle Scholar
  14. 14.
    C.H. Lee, H.S. Han, T.A. Duong, T.H. Dinh, C.W. Ahn, J.S. Lee, Ceram. Int. 43(14), 11071–11077 (2017)CrossRefGoogle Scholar
  15. 15.
    H. Sun, Y. Zhang, X. Liu, Y. Liu, W. Chen, Ceram. Int. 41(1), 555–565 (2015)CrossRefGoogle Scholar
  16. 16.
    Q. Gu, Q. Sun, K. Zhu, J. Liu, J. Qiu, Ceram. Int. 43(1), 1135–1144 (2017)CrossRefGoogle Scholar
  17. 17.
    J.-K. Kang, T.H. Dinh, C.-H. Lee, H.-S. Han, J.-S. Lee, V.D.N. Tran, Trans. Electr. Electron. Mater. 18, 1 (2017)CrossRefGoogle Scholar
  18. 18.
    T.H. Dinh, V.D.N. Tran, T.T. Nguyen, Q.T.N. Hoang, H.S. Han, J.S. Lee, Ceram. Int. 43(18), 17160–17166 (2017)CrossRefGoogle Scholar
  19. 19.
    T.H. Dinh, J.-K. Kang, J.-S. Lee, N.H. Khansur, J. Daniels, H.-Y. Lee, F.-Z. Yao, K. Wang, J.-F. Li, H.-S. Han, W. Jo, J. Eur. Ceram. Soc. 36(14), 3401–3407 (2016)CrossRefGoogle Scholar
  20. 20.
    H.-S. Han, J. Koruza, E.A. Patterson, J. Schultheiß, E. Erdem, W. Jo, J.-S. Lee, J. Rödel, J. Eur. Ceram. Soc. 37(5), 2083–2089 (2017)CrossRefGoogle Scholar
  21. 21.
    H.-S. Han, N.-B. Do, K.-N. Pham, H.-D. Jang, V.D.N. Tran, W.-P. Tai, J.-S. Lee, Ferroelectrics 421(1), 88–91 (2011)CrossRefGoogle Scholar
  22. 22.
    W. Jo, J.-B. Ollagnier, J.-L. Park, E.-M. Anton, O.J. Kwon, C. Park, H.-H. Seo, J.-S. Lee, E. Erdem, R.-A. Eichel, J. Rödel, J. Eur. Ceram. Soc. 31(12), 2107–2117 (2011)CrossRefGoogle Scholar
  23. 23.
    C.W. Ahn, C.-H. Hong, B.-Y. Choi, H.-S. Han, Y.H. Hwang, K. Wang, I.J.-F. Li, W. Kim, W. Jo, J. Korean Phys. Soc. 68(12), 1481–1494 (2016)CrossRefGoogle Scholar
  24. 24.
    A. Khaliq, M. Sheeraz, A. Ullah, J.S. Lee, C.W. Ahn, I.W. Kim, Sens. Actuators A Phys. 258, 174–181 (2017)CrossRefGoogle Scholar
  25. 25.
    R.-F. Ge, Z.-H. Zhao, S.-F. Duan, X.-Y. Kang, Y.-K. Lv, D.-S. Yin, Y. Dai, J. Alloys Compd. 724, 1000–1006 (2017)CrossRefGoogle Scholar
  26. 26.
    V. Pal, A. Kumar, O.P. Thakur, R.K. Dwivedi, N.E. Prasad, J. Alloys Compd. 714, 725–735 (2017)CrossRefGoogle Scholar
  27. 27.
    C. Randall, A. Hilton, D. Barber, T. Shrout, J. Mater. Res. 8(04), 880–884 (1993)CrossRefGoogle Scholar
  28. 28.
    H.-L. Li, Q. Liu, J.-J. Zhou, K. Wang, J.-F. Li, H. Liu, J.-Z. Fang, J. Eur. Ceram. Soc. 36(11), 2849–2853 (2016)CrossRefGoogle Scholar
  29. 29.
    H.-S. Han, W. Jo, J.-K. Kang, C.-W. Ahn, I.W. Kim, K.-K. Ahn, J.-S. Lee, J. Appl. Phys. 113(15), 154102 (2013)CrossRefGoogle Scholar
  30. 30.
    E. Sapper, N. Novak, W. Jo, T. Granzow, J. Rödel, J. Appl. Phys. 115(19), 194104 (2014)CrossRefGoogle Scholar
  31. 31.
    Y. Ehara, N. Novak, S. Yasui, M. Itoh, K.G. Webber, Appl. Phys. Lett. 107(26), 262903 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of UlsanUlsanRepublic of Korea
  2. 2.Department of Physics and EHSRCUniversity of UlsanUlsanRepublic of Korea

Personalised recommendations