Advertisement

Journal of Electroceramics

, Volume 41, Issue 1–4, pp 28–36 | Cite as

Low operating temperature CO sensor prepared using SnO2 nanoparticles

  • I-Chen Lin
  • Chung-Chieh Chang
  • Chung-Kwei Lin
  • Shao-Ju Shih
  • Chi-Jung Chang
  • Chien-Yie Tsay
  • Jen-Bin Shi
  • Tzyy-Leng Horng
  • Jing-Heng Chen
  • Jerry J. Wu
  • Ching-Ying Hung
  • Chin-Yi ChenEmail author
Article
  • 90 Downloads

Abstract

A low operating temperature CO (carbon monoxide) sensor was fabricated from a nanometer-scale SnO2 (tin oxide) powder. The SnO2 nanoparticles in a size range 10–20 nm were synthesized as a function of surfactant (tri-n-octylamine, TOA) addition (0–1.5 mol%) via a simple thermal decomposition method. The resulting SnO2 nanoparticles were first screen-printed onto an electrode patterned substrate to be a thick film. Subsequently, the composite film was heat-treated to be a device for sensing CO gas. The thermal decomposed powders were characterized by field-emission scanning electron microscopy (FESEM), X-ray diffractometry (XRD), and surface area measurements (BET). The CO-sensing performance of all the sensors was investigated. The experimental results showed that the TOA addition significantly decreased the particle size of the resulting SnO2 nanoparticle. However, the structure of the powder coating was crucial to their sensing performance. After heat-treatment, the smaller particle tended to cause the formation of agglomeration, resulting in the decline of surface area and reducing the reaction site during sensing. However, the paths for the sensed gas entering between the agglomerated structure may influence the sensing performance. As a CO sensing material, the SnO2 nanoparticle (~12 nm in diameter) prepared with 1.25 mol% TOA addition exhibited most stable electrical performance. The SnO2 coating with TOA addition >0.75 mol% exhibited sensor response at a relatively low temperature of <50°C.

Keywords

SnO2 CO sensor Low temperature Thermal decomposition Sensor response 

Notes

Acknowledgements

The authors would like to thank the Ministry of Science and Technology of Taiwan for financially supporting this work under Grant No. MOST 104-2221-E-035-016-MY2. The authors also appreciate the Precision Instrument Support Center of Feng Chia University in providing the measurement facilities.

References

  1. 1.
    G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Sensors 10, 5469 (2010)CrossRefGoogle Scholar
  2. 2.
    C.S. Moon, H.-R. Kim, G. Auchterlonie, J. Drennan, J.-H. Lee, Sensors Actuators B Chem. 131, 556 (2008)CrossRefGoogle Scholar
  3. 3.
    M. Hjiri, L.E. Mir, S.G. Leonardi, N. Donato, G. Neri, Nanomater. 3, 357 (2013)CrossRefGoogle Scholar
  4. 4.
    X. Li, R. Ramasamy, P.K. Dutta, Sensors Actuators B Chem. 143, 308 (2009)CrossRefGoogle Scholar
  5. 5.
    N. Izu, S. Nishizaki, T. Itoh, M. Nishibori, W. Shin, I. Matsubara, Sensors Actuators B Chem. 136, 364 (2009)CrossRefGoogle Scholar
  6. 6.
    G.B. Barbi, J.P. Santos, P. Serrini, P.N. Gibson, M.C. Horrillo, L. Manes, Sensors Actuators B Chem. 25, 559 (1995)CrossRefGoogle Scholar
  7. 7.
    B. Riviere, J.P. Viricelle, C. Pijolat, Sensors Actuators B Chem. 93, 531 (2003)CrossRefGoogle Scholar
  8. 8.
    A. Tischner, T. Maier, C. Stepper, A. Köck, Sensors Actuators B Chem. 134, 796 (2008)CrossRefGoogle Scholar
  9. 9.
    Y. Shimizu, A. Jono, T. Hyodo, M. Egashira, Sensors Actuators B Chem. 108, 56 (2005)CrossRefGoogle Scholar
  10. 10.
    J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287, 622 (2000)CrossRefGoogle Scholar
  11. 11.
    P.-S. Cho, K.-W. Kim, J.-H. Lee, J. Electroceram. 17, 975 (2006)CrossRefGoogle Scholar
  12. 12.
    A. Kolmakov, Y. Zhang, G. Cheng, M. Moskovits, Adv. Mater. 15, 997 (2003)CrossRefGoogle Scholar
  13. 13.
    H. Long, A. Harley-Trochimczyk, T. He, T. Pham, Z. Tang, T. Shi, A. Zettl, W. Mickelson, C. Carraro, R. Maboudian, ACS Sens. 1, 339 (2016)CrossRefGoogle Scholar
  14. 14.
    C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Sensors 10, 2088 (2010)CrossRefGoogle Scholar
  15. 15.
    G. Korotcenkov, Mater. Sci. Eng. B 139, 1 (2007)CrossRefGoogle Scholar
  16. 16.
    M. Schweizer-Berberich, J.G. Zheng, U. Weimar, W. Gopel, N. Barsan, E. Pentia, A. Tomescu, Sensors Actuators B Chem. 31, 71 (1996)CrossRefGoogle Scholar
  17. 17.
    A. Dieguez, A. Vila, A. Cabot, A. Romano-Rodriguez, J.R. Morante, J. Kappler, N. Barsan, U. Weimar, W. Gopel, Sensors Actuators B Chem. 68, 94 (2000)CrossRefGoogle Scholar
  18. 18.
    B. Kim, Y. Lu, A. Hannon, M. Meyyappan, J. Li, Sensors Actuators B Chem. 177, 770 (2013)CrossRefGoogle Scholar
  19. 19.
    H.B. Huo, C. Wang, F.D. Yan, H.Z. Ren, M.Y. Shen, J. Nanosci. Nanotechnol. 9, 1 (2009)CrossRefGoogle Scholar
  20. 20.
    R. Leghrib, R. Pavelko, A. Felten, A. Vasiliev, C. Cané, I. Gràcia, J.-J. Pireaux, E. Llobet, Sensors Actuators B Chem. 145, 411 (2010)CrossRefGoogle Scholar
  21. 21.
    C.-Y. Chen, K.-H. Chang, Sensors Actuators B Chem. 162, 68 (2012)CrossRefGoogle Scholar
  22. 22.
    C.-Y. Chen, K.-H. Chang, H.-Y. Chiang, S.-J. Shih, Sensors Actuators B Chem. 204, 31 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Mclaren, T. Valdes-Solis, G. Li, S.C. Tsang, J. Am. Chem. Soc. 131, 12540 (2009)CrossRefGoogle Scholar
  24. 24.
    X. Du, S.M. George, Sensors Actuators B Chem. 135, 152 (2008)CrossRefGoogle Scholar
  25. 25.
    A. Chiorino, G. Ghiotti, M.C. Carotta, G. Martinelli, Sensors Actuators B Chem. 47, 205 (1998)CrossRefGoogle Scholar
  26. 26.
    F. Hernández-Ramírez, A. Tarancón, O. Casals, J. Arbiol, A. Romano-Rodríguez, J.R. Morante, Sensors Actuators B Chem. 121, 3 (2007)CrossRefGoogle Scholar
  27. 27.
    C. Li, M. Lv, J. Zuo, X. Huang, Sensors 15, 3789 (2015)CrossRefGoogle Scholar
  28. 28.
    V.E. Bochenkov, G.B. Sergeev, in Metal Oxide Nanostructures and Their Applications, ed. by A. Umar, Y.B. Hahn (American Scientific Publishers, 2011), 3, pp. 31–52.Google Scholar
  29. 29.
    A. Naik, I. Parkin, R. Binions, Chemosenors 4, 3 (2016)CrossRefGoogle Scholar
  30. 30.
    H. Ren, H. Huo, P. Wang, C. Wang, S. Liu, M. Shen, H. Sun, M. Ruths, Int. J. Smart Nano Mater. 5, 257 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I-Chen Lin
    • 1
  • Chung-Chieh Chang
    • 2
  • Chung-Kwei Lin
    • 2
  • Shao-Ju Shih
    • 3
  • Chi-Jung Chang
    • 4
  • Chien-Yie Tsay
    • 1
  • Jen-Bin Shi
    • 5
  • Tzyy-Leng Horng
    • 6
  • Jing-Heng Chen
    • 7
  • Jerry J. Wu
    • 8
  • Ching-Ying Hung
    • 1
  • Chin-Yi Chen
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringFeng Chia UniversityTaichungTaiwan
  2. 2.School of Dental Technology, College of Oral MedicineTaipei Medical UniversityTaipeiTaiwan
  3. 3.Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan
  4. 4.Department of Chemical EngineeringFeng Chia UniversityTaichungTaiwan
  5. 5.Department of Electronic EngineeringFeng Chia UniversityTaichungTaiwan
  6. 6.Department of Applied MathematicsFeng Chia UniversityTaichungTaiwan
  7. 7.Department of PhotonicsFeng Chia UniversityTaichungTaiwan
  8. 8.Department of Environmental Engineering and ScienceFeng Chia UniversityTaichungTaiwan

Personalised recommendations