Journal of Electroceramics

, Volume 42, Issue 1–2, pp 41–46 | Cite as

Improved giant dielectric properties in microwave flash combustion derived and microwave sintered CaCu3Ti4O12 ceramics

  • Ranjit KumarEmail author
  • M. Zulfequar
  • T. D. Senguttuvan


The nanocrystals of CaCu3Ti4O12 ceramic were prepared by microwave flash combustion technique. The microwave sintering of powders was optimized to 1025 − 1075 °C for 20 min with heating and cooling rate of 50 °C/min. Microstructural evaluation of sintered sample was carried out using SEM. The dielectric properties were measured in the frequency range 10–2 × 106 Hz and the temperature range 30–100 °C. The CCTO sample sintered at 1075 °C had giant dielectric constant 53,300 at 100 Hz. It was observed that dielectric constant was greatly increased on a slight increase in sintering temperature. Modulus and impedance analysis were performed to explore the observed unusual dielectric response. Grain and grain boundary resistance were observed as 8 Ω and 350,000 Ω, respectively. The grain boundary activation energy for electro-conduction was calculated as 0.65 eV by using the characteristic frequencies in cole-cole plots. It was noticed that the thermally activated charge carriers had long-range mobility.


Ceramic Microwave flash combustion Microwave sintering Dielectric properties 



Ranjit Kumar is thankful to Council of Scientific and Industrial Research (CSIR), India for funding to carry out this research work.


  1. 1.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151(2), 323–325 (2000)CrossRefGoogle Scholar
  2. 2.
    C.C. Homes, T.S. Vogt, M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293(5530), 673–676 (2001)CrossRefGoogle Scholar
  3. 3.
    S.Y. Chung, I.D. Kim, S.L. Kang, Nature Mater. 3(11), 774–778 (2004)CrossRefGoogle Scholar
  4. 4.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, App. Phys. Lett. 80, 2153 (2002)Google Scholar
  5. 5.
    R. Kumar, M. Zulfequar, T.D. Senguttuvan, J. Mater. Sci. Mater. Electron. 26, 6718 (2015)CrossRefGoogle Scholar
  6. 6.
    R. Kumar, M. Zulfequar, L. Sharma, V.N. Singh, T.D. Senguttuvan, Cryst. Growth Des. 15(3), 1374–1379 (2015)CrossRefGoogle Scholar
  7. 7.
    R. Kumar, M. Zulfequar, V.N. Singh, J.S. Tawale, T.D. Senguttuvan, J. Alloy Compd. 541, 428–432 (2012)CrossRefGoogle Scholar
  8. 8.
    T.T. Fang, H.K. Shiau, J. Am. Ceram. Soc. 87, 2072 (2004)CrossRefGoogle Scholar
  9. 9.
    A.M. Awasthi, J. Kumar, J. Appl. Phys. 112(5), 54108 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Zheng, A.I. Frenkel, L. Wu, J. Hanson, W. Ku, E.S. Bozin, S.J.L. Billinge, Y. Zhu, Phys. Rev. B 81(14), 144203 (2010)CrossRefGoogle Scholar
  11. 11.
    M.A. Rubia, P. Leret, J. Frutos, J.F. Fernandez, J. Am. Ceram. Soc. 95(6), 1866–1870 (2012)CrossRefGoogle Scholar
  12. 12.
    J.F. Fernandez, P. Leret, J.J. Romero, J. Frutos, M.A. Rubia, M.S. Gonzalez, J.L. Kramer, J.L.G. Fierro, A. Quesada, M.A. Garcia, J. Am. Ceram. Soc. 92(10), 2311–2318 (2009)CrossRefGoogle Scholar
  13. 13.
    P. Delugas, P. Alippi, V. Fiorentini, V. Raineri, Phys. Rev. B 81(81104) (2010)Google Scholar
  14. 14.
    R. Parra, E. Joanni, J.W.M. Espinosa, R. Tararam, M. Cilense, P.R. Bueno, J.A. Varela, E. Longo, J. Am. Ceram. Soc. 91(12), 4162–4164 (2008)CrossRefGoogle Scholar
  15. 15.
    P. Jha, P. Arora, A.K. Ganguli, Mater. Lett. 57(16-17), 2443–2446 (2003)CrossRefGoogle Scholar
  16. 16.
    B. Barbier, C. Combettes, S.G. Fritsch, T. Chartier, F. Rossignol, A. Rumeau, T. Lebey, E. Dutarde, J. Eur. Ceram. Soc. 29(4), 731–735 (2009)CrossRefGoogle Scholar
  17. 17.
    H. Yu, H. Liu, D. Luo, M. Cao, J. Mater. Process. Technol. 208(1-3), 145–148 (2008)CrossRefGoogle Scholar
  18. 18.
    K.P. Chen, Y. He, D.Y. Liu, Z.D. Liu, Key Eng. Mater. 368-372, 115–117 (2008)CrossRefGoogle Scholar
  19. 19.
    P. Thomas, K. Dwarakanath, K.B.R. Varma, T.R.N. Kutty, J. Therm. Anal. Calorim. 95(1), 267–272 (2009)CrossRefGoogle Scholar
  20. 20.
    J. Liu, Y. Sui, C. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, Chem. Mater. 18(16), 3878–3882 (2006)CrossRefGoogle Scholar
  21. 21.
    W.X. Yuan, Z.J. Li, Eur. Phys. J. Appl. Phys. 57(1), 11302 (2012)CrossRefGoogle Scholar
  22. 22.
    P. Thongbai, C. Masingboon, S. Meansiri, T, Yamwong, S. Wongsaenmai, R. Yimnirun, J. Phys.: Condens. Matter 19, 236208 (2007), 23Google Scholar
  23. 23.
    A.A. Felix, M.O. Orlandi, J.A. Varela, Solid State Commun. 151(19), 1377–1381 (2011)CrossRefGoogle Scholar
  24. 24.
    A. Mondal, A. Shukla, A. Upadhyaya, D. Agrawal, Sci. Sinter. 42(2), 169–182 (2010)CrossRefGoogle Scholar
  25. 25.
    S.D. Hutagalung, M. Ikhwan, M. Ibrahim, Z.A. Ahmad, Ceram. Int. 34(4), 939–942 (2008)CrossRefGoogle Scholar
  26. 26.
    O.P. Thakur, C. Prakash, D.K. Agrawal, Mater. Sci. Eng. B 96(3), 221–225 (2002)CrossRefGoogle Scholar
  27. 27.
    A. Oloyede, P. Groombridge, J. Mater. Process. Technol. 100(1-3), 67–73 (2000)CrossRefGoogle Scholar
  28. 28.
    T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14(18), 1321–1323 (2002)CrossRefGoogle Scholar
  29. 29.
    S.I.R. Costa, M. Li, J.R. Frade, D.C. Sinclair, RSC Adv. 3(19), 7030 (2013)CrossRefGoogle Scholar
  30. 30.
    J. Liu, C. Duan, W. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B 70(14), 144106 (2004)CrossRefGoogle Scholar
  31. 31.
    L. Singh, I.W. Kim, B.C. Sin, K.D. Mandal, U.S. Rai, A. Ullah, H. Chung, Y. Lee, RSC Adv. 4(95), 52770–52784 (2014)CrossRefGoogle Scholar
  32. 32.
    S.F. Shao, J.L. Zhang, P. Zheng, W.L. Zhong, C.L. Wang, J. Appl. Phys. 99(8), 84106 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ranjit Kumar
    • 1
    Email author
  • M. Zulfequar
    • 3
  • T. D. Senguttuvan
    • 2
  1. 1.Department of Physics, Acharya Narendra Dev CollegeUniversity of DelhiNew DelhiIndia
  2. 2.Physics of Energy Harvesting DivisionNational Physical Laboratory (CSIR)New DelhiIndia
  3. 3.Department of PhysicsJamia Millia IslamiaNew DelhiIndia

Personalised recommendations