Skip to main content
Log in

Chemical solution deposition of copper thin films and integration into a multilayer capacitor structure

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Metallization layers with thicknesses well below a micron are needed for future generation multilayer ceramic devices such as capacitors and integrated passive components. In many cases, the limiting thickness for the electrode is governed by dewetting of the metals from the oxide surface. Therefore, thin, stable metallization layers with low electrical resistivities that can survive high processing temperatures are of interest for these applications. For this purpose, Cu films prepared from 2-methoxyethanol-based solutions were developed using adhesion promoters such as Ti, Zn, and Zr. The solutions were spun onto BaTiO3/SiO2/Si or SiO2/Si substrates, pyrolyzed, and annealed in a reducing ambient. The microstructure of films prepared in this way was found to be uniform and continuous at thicknesses as low as 80 nm. Cu films modified with 15 mol% Zr had electrical resistivities of about 16–17 μΩ-cm after 500°C annealing and 5–6 μΩ-cm after annealing at 900°C in a reducing ambient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H. Kishi, Y. Mizuno, H. Chazono, Base–metal electrode-multilayer ceramic capacitors: past, present and future perspectives Jpn. J. Appl. Phys. 42(1), 1–15 (2003), Part 1

    Article  CAS  ADS  Google Scholar 

  2. C.A. Randall, Scientific and Engineering issues of the state-of-the-art and future multilayer capacitors J. Ceram. Soc. Jpn. 109(1), S2–S6 (2001)

    CAS  MathSciNet  Google Scholar 

  3. M. Randall, D. Skamser, T. Kinard, J. Qazi, A. Tajuddin, S. Trolier-McKinstry, C. A. Randall, S. W. Ko, T. Dechakupt, Thin Film MLCC, CARTS 2007 (2007)

  4. J.W. Crownover, US Patent No. 5,254,360 (1993)

  5. Y. Sakabe, Development of dielectric ceramics for nickel electrode multilayer capacitors J. Jpn. Soc. Powder Powder Metallurgy 51(4), 274–284 (2004)

    Google Scholar 

  6. J.T. Dawley, P.G. Clem, Dielectric Properties of random and <100> oriented SrTiO3 and (Ba,Sr)TiO3 thin films fabricated on <100> nickel tapes Appl. Phys. Lett. 81(16), 3028–3030 (2002). doi:10.1063/1.1516630

    Article  CAS  ADS  Google Scholar 

  7. H. Nagata, S.W. Ko, E. Hong, C.A. Randall, S. Trolier-McKinstry, P. Pinceloup et al., Microcontact printed BaTiO3 and LaNiO3 thin films for capacitors J. Am. Ceram. Soc. 89(9), 2816–2821 (2006)

    CAS  Google Scholar 

  8. T. Dechakupt, G. Yang, C.A. Randall, I. Reaney, S. Trolier-McKinstry, Chemical solution-deposited BaTiO3 thin films on Ni foils: microstructure and interfaces J. Am. Ceram. Soc. 91(6), 1845–1850 (2008). doi:10.1111/j.1551-2916.2008.02407.x

    Article  CAS  Google Scholar 

  9. J. Ihlefeld, B. Laughlin, A. Hunt-Lowery, W. Borland, A. Kingon, J.-P. Maria, Copper compatible barium titanate thin films for embedded passives J. Electroceram. 14, 95–102 (2005). doi:10.1007/s10832-005-0866-6

    Article  CAS  Google Scholar 

  10. J. Ihlefeld, W. Borland, J.-P. Maria, Enhanced dielectric and crystalline properties in ferroelectric barium titanate thin films Adv. Funct. Mater. 17, 1199–1203 (2007). doi:10.1002/adfm.200601159

    Article  CAS  Google Scholar 

  11. W. Borland, J. Ihlefeld, A.I. Kingon, J.-P. Maria, Thin film dielectric for capacitors and methods of making thereof. U.S. Patent 7,029,971, April 18, 2006

  12. Y. Sakabe, Y. Takeshima, K. Tanaka, Multilayer ceramic capacitors with thin (Ba,Sr)TiO3 Layers by MOCVD J. Electroceram. 3(2), 115–121 (1999). doi:10.1023/A:1009986825169

    Article  CAS  Google Scholar 

  13. Y. Yamashita, H. Yamamoto, Y. Sakabe, Dielectric properties of BaTiO3 thin films derived from clear emulsion of well-dispersed nanosized BaTiO3 particles Jpn. J. Appl. Phys. 43(9B), 6521–6524 (2004). doi:10.1143/JJAP.43.6521

    Article  CAS  ADS  Google Scholar 

  14. M.M. Watt, P. Woo, T. Rywak, L. McNeil, A. Kassam, V. Joshi, et al., Feasibility demonstration of a multi-level thin film BST capacitor technology. ISAF 98, Proceedings of the Eleventh IEEE International Symposium 11–14 (1998)

  15. G.L. Brennecka, B.A. Tuttle, Fabrication of ultrathin film capacitors fabricated by chemical solution deposition J. Mater. Res. 22(10), 2868–2874 (2007). doi:10.1557/jmr.2007.0371

    Article  CAS  ADS  Google Scholar 

  16. G.L. Brennecka, C.M. Parish, B.A. Tuttle, L.N. Brewer, Multilayer thin and ultrathin film capacitors fabricated by chemical solution deposition J. Mater. Res. 23(1), 176–181 (2008). doi:10.1557/jmr.2008.0010

    Article  CAS  ADS  Google Scholar 

  17. S. Miyake, K. Yamamoto, S. Fujihara, T. Kimura, (100)-orientation of pseudocubic perovskite-type LaNiO3 thin films on glass substrates via the sol–gel process J. Am. Ceram. Soc. 85, 992–994 (2002)

    Article  CAS  Google Scholar 

  18. J. Li, J.W. Mayer, E.G. Colgan, Oxidation and protection in copper and copper alloy thin films J. Appl. Phys. 70(5), 2820–2827 (2002). doi:10.1063/1.349344

    Article  ADS  Google Scholar 

  19. H.K. Liou, J.S. Huang, K.N. Tu, Oxidation of Cu and Cu3Ge thin films J. Appl. Phys. 77(10), 5443–5445 (1995). doi:10.1063/1.359238

    Article  CAS  ADS  Google Scholar 

  20. P. Shen, H. Fujii, K. Nogi, Wetting, adhesion and diffusion in Cu–Al/SiO2 system at 1473K Scr. Mater. 52, 1259–1263 (2005). doi:10.1016/j.scriptamat.2005.02.019

    Article  CAS  Google Scholar 

  21. M. Hu, S. Noda, T. Okubo, H. Komiyama, Wettability and crystalline orientation of Cu nanoislands on SiO2 with a Cr underlayer Appl. Phys. A 79, 625–628 (2004). doi:10.1007/s00339-004-2604-3

    Article  CAS  ADS  Google Scholar 

  22. S.-F. Wang, T.C.K. Yang, S.-C. Lee, Wettability of Electrode Metals on Barium Titanate Substrate J. Mater. Sci. 36, 825–829 (2001). doi:10.1023/A:1004862011318

    Article  CAS  Google Scholar 

  23. D.P. Cann, J.-P. Maria, C.A. Randall, Relationship between wetting and electrical contact properties of pure metals and alloys on semiconducting barium titanate ceramics J. Mater. Sci. 36, 4969–4976 (2001). doi:10.1023/A:1011817128242

    Article  CAS  Google Scholar 

  24. R. Standing, M. Nicholas, The wetting of alumina and vitreous carbon by copper–tin–titanium alloys J. Mater. Sci. 13, 1509–1514 (1978). doi:10.1007/BF00553207

    Article  CAS  ADS  Google Scholar 

  25. A. Kar, S. Mandal, S. Rathod, A.K. Ray, Effect of Ti diffusivity on the formation of phases in the interface of alumina–alumina brazed with 97(Ag40Cu)3Ti filler alloy. Proceedings the 3rd international brazing and soldering conference. April 24–26 San Antonio, Texas, USA (2006).

  26. M. Hu, S. Noda, T. Okubo, H. Komiyama, Wettability and crystalline orientation of Cu nanoislands on SiO2 with a Cr Underlayer Appl. Phys. A 79, 625–628 (2004). doi:10.1007/s00339-004-2604-3

    Article  CAS  ADS  Google Scholar 

  27. M. Hu, S. Noda, T. Okubo, Y. Yamaguchi, H. Komiyama, Structural and morphological control of nanosized Cu islands on SiO2 using a Ti underlayer J. Appl. Phys. 94(5), 3492–3497 (2003). doi:10.1063/1.1597972

    Article  CAS  ADS  Google Scholar 

  28. P.B. Abel, A.L. Korenyi-Both, F.S. Honecy, S.V. Pepper, Study of copper on graphite with titanium or chromium bond layer J. Mater. Res. 9(3), 617 (1994). doi:10.1557/JMR.1994.0617

    Article  ADS  Google Scholar 

  29. O.-K. Kwon, S.-H. Kwon, H.-S. Park, S.-W. Kang, PEALD of a ruthenium adhesion layer for copper interconnects J. Electrochem. Soc. 151(12), C753–C756 (2004). doi:10.1149/1.1809576

    Article  CAS  Google Scholar 

  30. Z. Wang, O. Yaegashi, H. Sakaue, T. Takayuki, S. Shingubara, Highly adhesive electroless Cu layer formation using an ultra thin Ionized Cluster Beam (ICB)-Pd catalytic layer for sub-100nm Cu interconnections Jpn. J. Appl. Phys. 42, L1223–L1225 (2003). doi:10.1143/JJAP.42.L1223

    Article  CAS  ADS  Google Scholar 

  31. F. Alvarez y Quintavalle, G.A. Battiston, U. Casellato, D. Fregona, R. Gerbasi, F. Loro, Conductive Cu-TiO2 thin films obtained via MOCVD J. Phys. IV Fr. 12, Pr4–Pr147 (2002)

    Google Scholar 

  32. N. Awaya, Y. Arita, Plasma-enhanced chemical vapor deposition of copper Jpn. J. Appl. Phys. 30, 1813–1817 (1991). doi:10.1143/JJAP.30.1813

    Article  CAS  ADS  Google Scholar 

  33. J.Y. Kim, P.J. Reucroft, D.K. Park, Nucleation and growth of mechanisms of copper MOCVD film on Au/Si substrates Thin Solid Films 289, 184–191 (1996). doi:10.1016/S0040-6090(96)08908-0

    Article  CAS  ADS  Google Scholar 

  34. C.J. Liu, J.S. Chen, Influence of Zr additives on the microstructure and oxidation resistance of Cu(Zr) thin films J. Mater. Res. 20(2), 496–503 (2005). doi:10.1557/JMR.2005.0068

    Article  CAS  ADS  Google Scholar 

  35. J.-W. Lim, K. Mimura, M. Isshiki, Thickness dependence of resistivity for Cu films deposited by ion beam deposition Appl. Surf. Sci. 217, 95–99 (2003). doi:10.1016/S0169-4332(03)00522-1

    Article  CAS  ADS  Google Scholar 

  36. D.P. Cann, C.A. Randall, Segregation in bimetallic alloys and its influence on wetting on a positive temperature coefficient resistor BaTiO3 ceramic J. Appl. Phys. 90(11), 5698–5702 (2001). doi:10.1063/1.1413237

    Article  CAS  ADS  Google Scholar 

  37. D.P. Cann, C.A. Randall, The thermochemistry and non-ohmic electrical contacts of a BaTiO3 PTCR Ceramic IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(6), 1405–1408 (1997). doi:10.1109/58.656645

    Article  Google Scholar 

  38. K. Lee, Y.K. Lee, Irreversible hydrogen effects on resistivity of sputtered copper film J. Mater. Sci. 35, 6035–6040 (2000). doi:10.1023/A:1026727818193

    Article  CAS  Google Scholar 

  39. A.F. Mayadas, R. Feder, R. Rosenberg, Resistivity and structure of evaporated aluminum films J. Vac. Sci. Technol. 6, 690–693 (1969). doi:10.1116/1.1315731

    Article  CAS  ADS  Google Scholar 

  40. A.F. Mayadas, M. Shatzkes, Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces Phys. Rev. B 1, 1382–1389 (1970). doi:10.1103/PhysRevB.1.1382

    Article  ADS  Google Scholar 

  41. T.-H. Song, C.A. Randall, Copper cofire X7R dielectrics and multilayer capacitors based on zinc borate fluxed barium titanate ceramic J. Electroceram. 10, 39–46 (2003). doi:10.1023/A:1024028024779

    Article  CAS  Google Scholar 

  42. J. Coates, Encyclopedia of Analytical Chemistry (Wiley, New York, 2000)

    Google Scholar 

  43. J.R. Martinez, G. Ortega-Zarzosa, O. Dominguez-Espinos, F. Ruiz, Low temperature devitrification of Ag/SiO2 and Ag(CuO)/SiO2 composites J. Non-cryst Solids 282, 317–320 (2001). doi:10.1016/S0022-3093(01)00346-5

    Article  CAS  ADS  Google Scholar 

  44. A.I. Kingon, S. Srinivasan, Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications Nat. Mater. 4, 233–237 (2005). doi:10.1038/nmat1334

    Article  CAS  ADS  Google Scholar 

  45. T.B. Massalski, Binary Alloy Phase Diagrams, 2nd edn. (ASM, Materials Park, OH, 1990)

    Google Scholar 

  46. Y. Hakotani, US Patent No., 5,004,715 (1991)

Download references

Acknowledgments

This work was supported by KEMET Electronics Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Won Ko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, S.W., Dechakupt, T., Randall, C.A. et al. Chemical solution deposition of copper thin films and integration into a multilayer capacitor structure. J Electroceram 24, 161–169 (2010). https://doi.org/10.1007/s10832-008-9551-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-008-9551-x

Keywords

Navigation