Advertisement

Electrodiffusion models of synaptic potentials in dendritic spines

  • Thibault LagacheEmail author
  • Krishna Jayant
  • Rafael Yuste
Article

Abstract

The biophysical properties of dendritic spines play a critical role in neuronal integration but are still poorly understood, due to experimental difficulties in accessing them. Spine biophysics has been traditionally explored using theoretical models based on cable theory. However, cable theory generally assumes that concentration changes associated with ionic currents are negligible and, therefore, ignores electrodiffusion, i.e. the interaction between electric fields and ionic diffusion. This assumption, while true for large neuronal compartments, could be incorrect when applied to femto-liter size structures such as dendritic spines. To extend cable theory and explore electrodiffusion effects, we use here the Poisson (P) and Nernst-Planck (NP) equations, which relate electric field to charge and Fick’s law of diffusion, to model ion concentration dynamics in spines receiving excitatory synaptic potentials (EPSPs). We use experimentally measured voltage transients from spines with nanoelectrodes to explore these dynamics with realistic parameters. We find that (i) passive diffusion and electrodiffusion jointly affect the dynamics of spine EPSPs; (ii) spine geometry plays a key role in shaping EPSPs; and, (iii) the spine-neck resistance dynamically decreases during EPSPs, leading to short-term synaptic facilitation. Our formulation, which complements and extends cable theory, can be easily adapted to model ionic biophysics in other nanoscale bio-compartments.

Keywords

Synaptic transmission Dendritic spines Electrodiffusion Asymptotic analysis Coarse-grained model Electrophysiology Simulations 

Notes

Acknowledgements

This work was supported by the NIMH (R01MH101218, R01MH100561) and the NINDS (R01NS110422). This material is also based upon work supported by, or in part by, the U. S. Army Research Laboratory and the U. S. Army Research Office under contract number W911NF-12-1-0594 (MURI). T.L. was partly supported by the Fondation pour la Recherche Médicale and the Philippe foundation. K.J was supported by the Kavli Institute of Brain Science at Columbia.

Author contributions

T.L. and R.Y. conceived the project. T.L performed the modeling and analysis. K.J assisted with model development and analysis. T.L and K.J wrote the manuscript. R.Y assembled and directed the team, provided guidance, funding, and edited the manuscript.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary material

10827_2019_725_MOESM1_ESM.pdf (941 kb)
ESM 1 (PDF 940 kb)

References

  1. Harris, K. M., & Kater, S. (1994). Dendritic spines: Cellular specializations imparting both stability and flexibility to synaptic function. Annual Review of Neuroscience, 17(1), 341–371.CrossRefGoogle Scholar
  2. Yuste, R. (2011). Dendritic spines and distributed circuits. Neuron, 71(5), 772–781.CrossRefGoogle Scholar
  3. Yuste, R. (2010). Dendritic Spines. Cambridge: MIT Press.CrossRefGoogle Scholar
  4. Yuste, R., & Majewska, A. (2001). On the function of dendritic spines. Neuroscientist, 7(5), 387–395.CrossRefGoogle Scholar
  5. Yang, G., Pan, F., & Gan, W.-B. (2009). Stably maintained dendritic spines are associated with lifelong memories. Nature, 462(7275), 920–924.CrossRefGoogle Scholar
  6. Stuart, G. J., & Spruston, N. (2015). Dendritic integration: 60 years of progress. Nature Neuroscience, 18(12), 1713–1721.CrossRefGoogle Scholar
  7. Popovic, M. A., Carnevale, N., Rozsa, B., & Zecevic, D. (2015). Electrical behaviour of dendritic spines as revealed by voltage imaging. Nature Communications, 6, 8436.CrossRefGoogle Scholar
  8. Jayant, K., Hirtz, J. J., Plante, I. J. L., Tsai, D. M., de Boer, W. D. A. M., Semonche, A., Peterka, D. S., Owen, J. S., Sahin, O., Shepard, K. L., & Yuste, R. (2017). Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes. Nature Nanotechnology, 12(4), 335–342.CrossRefGoogle Scholar
  9. Grunditz, A., Holbro, N., Tian, L., Zuo, Y., & Oertner, T. G. (2008). Spine neck plasticity controls postsynaptic calcium signals through electrical compartmentalization. The Journal of neuroscience : the official journal of the Society for Neuroscience, 28(50), 13457–13466.CrossRefGoogle Scholar
  10. Acker, C. D., Hoyos, E., & Loew, L. M. (2016). EPSPs Measured in Proximal Dendritic Spines of Cortical Pyramidal Neurons. eNeuro, 3(2).  https://doi.org/10.1523/ENEURO.0050-15.2016.
  11. Harnett, M. T., Makara, J. K., Spruston, N., Kath, W. L., & Magee, J. C. (2012). Synaptic amplification by dendritic spines enhances input cooperativity. Nature, 491, 599–602.CrossRefGoogle Scholar
  12. Cartailler, J., et al.. (2017a). Deconvolution of voltage sensor time series and electro-diffusion modeling of synaptic input in dendritic spines. Neuron, . (in press).Google Scholar
  13. Svoboda, K., Tank, D. W., & Denk, W. (1996). Direct measurement of coupling between dendritic spines and shafts. Science, 272, 716–719.CrossRefGoogle Scholar
  14. Tønnesen, J., Katona, G., Rózsa, B., & Nägerl, U. V. (2014). Spine neck plasticity regulates compartmentalization of synapses. Nature Neuroscience, 17(5), 678–685.CrossRefGoogle Scholar
  15. Beaulieu-Laroche, L., Harnett, M.T. (2017). Dendritic Spines prevent synaptic voltage clamp. Neuron.Google Scholar
  16. Araya, R., Jiang, J., Eisenthal, K. B., & Yuste, R. (2006). The spine neck filters membrane potentials. Proceedings of the National Academy of Sciences of the United States of America, 103(47), 17961–17966.CrossRefGoogle Scholar
  17. Kwon, T., Sakamoto, M., Peterka, D. S., & Yuste, R. (2017). Attenuation of synaptic potentials in dendritic Spines. Cell Reports, 20(5), 1100–1110.CrossRefGoogle Scholar
  18. Arellano, J. I., Benavides-Piccione, R., Defelipe, J., & Yuste, R. (2007). Ultrastructure of dendritic spines: Correlation between synaptic and spine morphologies. Frontiers in Neuroscience, 1(1), 131–143.CrossRefGoogle Scholar
  19. Segev, I., & Rall, W. (1998). Excitable dendrites and spines: Earlier theoretical insights elucidate recent direct observations. Trends in Neurosciences, 21(11), 453–460.CrossRefGoogle Scholar
  20. Koch, C. (1984). Cable theory in neurons with active, linearized membranes. Biological Cybernetics, 50(1), 15–33.CrossRefGoogle Scholar
  21. Koch, C., & Poggio, T. (1983). Electrical properties of dendritic spines. TINS, 6, 80–83.Google Scholar
  22. Koch, C., Segev, I. (1998). Methods in neuronal modeling: from ions to networks. MIT press.Google Scholar
  23. Jack, J. J. B., Noble, D., & Tsien, R. W. (1975). Electric current flow in excitable cells. London: Oxford University Press.Google Scholar
  24. Bloodgood, B. L., & Sabatini, B. L. (2005). Neuronal activity regulates diffusion across the neck of dendritic spines. Science, 310, 866–869.CrossRefGoogle Scholar
  25. Miyazaki, K., Ross, W. N.. (2017). Sodium dynamics in pyramidal neuron dendritic spines: synaptically evoked entry predominantly through AMPA receptors and removal by diffusion. Journal of Neuroscience, p. 1758–17.Google Scholar
  26. Schuss, Z., Singer, A., & Holcman, D. (2007). The narrow escape problem for diffusion in cellular microdomains. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16098–16103.CrossRefGoogle Scholar
  27. Kushmerick, M., & Podolsky, R. (1969). Ionic mobility in muscle cells. Science, 166(3910), 1297–1298.CrossRefGoogle Scholar
  28. Qian, N., & Sejnowski, T. (1989). An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons. Biological Cybernetics, 62(1), 1–15.CrossRefGoogle Scholar
  29. Savtchenko, L. P., Poo, M. M., & Rusakov, D. A. (2017). Electrodiffusion phenomena in neuroscience: A neglected companion. Nature Reviews. Neuroscience, 18(10), 598–612.CrossRefGoogle Scholar
  30. Sylantyev, S., Savtchenko, L. P., Ermolyuk, Y., Michaluk, P., & Rusakov, D. A. (2013). Spike-driven glutamate electrodiffusion triggers synaptic potentiation via a homer-dependent mGluR-NMDAR link. Neuron, 77(3), 528–541.CrossRefGoogle Scholar
  31. Sylantyev, S., Savtchenko, L. P., Niu, Y. P., Ivanov, A. I., Jensen, T. P., Kullmann, D. M., Xiao, M. Y., & Rusakov, D. A. (2008). Electric fields due to synaptic currents sharpen excitatory transmission. Science, 319(5871), 1845–1849.CrossRefGoogle Scholar
  32. Schuss, Z., Nadler, B., & Eisenberg, R. S. (2001). Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. Physical Review E, 64(3), 036116.CrossRefGoogle Scholar
  33. Holcman, D., & Yuste, R. (2015). The new nanophysiology: Regulation of ionic flow in neuronal subcompartments. Nature Reviews. Neuroscience, 16(11), 685–692.CrossRefGoogle Scholar
  34. Chen, D., Lear, J., & Eisenberg, B. (1997). Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. Biophysical Journal, 72(1), 97–116.CrossRefGoogle Scholar
  35. Halnes, G., Mäki-Marttunen, T., Keller, D., Pettersen, K. H., Andreassen, O. A., & Einevoll, G. T. (2016). Effect of ionic diffusion on extracellular potentials in neural tissue. PLoS Computational Biology, 12(11), e1005193.CrossRefGoogle Scholar
  36. Pods, J., Schonke, J., & Bastian, P. (2013). Electrodiffusion models of neurons and extracellular space using the Poisson-Nernst-Planck equations--numerical simulation of the intra- and extracellular potential for an axon model. Biophysical Journal, 105(1), 242–254.CrossRefGoogle Scholar
  37. Jayant, K., et al. (2013). Programmable ion-sensitive transistor interfaces. II. Biomolecular sensing and manipulation. Physical Review E, 88(1), 012802.CrossRefGoogle Scholar
  38. Jayant, K., et al. (2014). Programmable ion-sensitive transistor interfaces. III. Design considerations, signal generation, and sensitivity enhancement. Physical Review E, 89(5), 052817.CrossRefGoogle Scholar
  39. Tsay, D., & Yuste, R. (2004). On the electrical function of dendritic spines. Trends in Neurosciences, 27(2), 77–83.CrossRefGoogle Scholar
  40. Tovar, R.K., Westbrook, G. L. (2012). Ligand-Gated Ion Channels, in Cell Physiology Source Book (Fourth Edition).Google Scholar
  41. Kosińska, I., et al. (2008). Rectification in synthetic conical nanopores: A one-dimensional Poisson-Nernst-Planck model. Physical Review E, 77(3), 031131.CrossRefGoogle Scholar
  42. Goldman, D. E. (1943). Potential, impedance, and rectification in membranes. The Journal of General Physiology, 27(1), 37–60.CrossRefGoogle Scholar
  43. Singer, A., & Norbury, J. (2009). A Poisson–Nernst–Planck model for biological ion channels—An asymptotic analysis in a three-dimensional narrow funnel. SIAM Journal on Applied Mathematics, 70(3), 949–968.CrossRefGoogle Scholar
  44. Schoch, R. B., Han, J., & Renaud, P. (2008). Transport phenomena in nanofluidics. Reviews of Modern Physics, 80(3), 839–883.CrossRefGoogle Scholar
  45. Yuste, R. (2013). Electrical compartmentalization in dendritic spines. Annual Review of Neuroscience, 36, 429–449.CrossRefGoogle Scholar
  46. Bourne, J. N., & Harris, K. M. (2008). Balancing structure and function at hippocampal dendritic Spines. Annual Review of Neuroscience, 31, 37–67.CrossRefGoogle Scholar
  47. Ngo-Anh, T., et al. (2005). SK channels and NMDA receptors form a ca(2+)-mediated feedback loop in dendritic spines. Nature Neuroscience, 8, 642–649.CrossRefGoogle Scholar
  48. Delpire, E., & Staley, K. J. (2014). Novel determinants of the neuronal cl(−) concentration. The Journal of Physiology, 592(19), 4099–4114.CrossRefGoogle Scholar
  49. Cartailler, J., Schuss, Z., & Holcman, D. (2017b). Electrostatics of non-neutral biological microdomains. Scientific Reports, 7(1), 11269.CrossRefGoogle Scholar
  50. Cartailler, J., Schuss, Z., & Holcman, D. (2017c). Analysis of the Poisson–Nernst–Planck equation in a ball for modeling the voltage–current relation in neurobiological microdomains. Physica D: Nonlinear Phenomena, 339, 39–48.CrossRefGoogle Scholar
  51. Zhou, T., Ming, Y., Perry, S. F., & Tatic-Lucic, S. (2016). Estimation of the physical properties of neurons and glial cells using dielectrophoresis crossover frequency. Journal of Biological Physics, 42(4), 571–586.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological SciencesColumbia UniversityNew YorkUSA
  2. 2.Neurotechnology CenterColumbia UniversityNew YorkUSA
  3. 3.Kavli institute of Brain ScienceColumbia UniversityNew YorkUSA
  4. 4.BioImage Analysis UnitInstitut PasteurParisFrance
  5. 5.Department of Electrical EngineeringColumbia UniversityNew YorkUSA

Personalised recommendations