Mitochondrial dysfunction and role in spreading depolarization and seizure

  • Patrick Toglia
  • Ghanim UllahEmail author


The effect of pathological phenomena such as epileptic seizures and spreading depolarization (SD) on mitochondria and the potential feedback of mitochondrial dysfunction into the dynamics of those phenomena are complex and difficult to study experimentally due to the simultaneous changes in many variables governing neuronal behavior. By combining a model that accounts for a wide range of neuronal behaviors including seizures, normoxic SD, and hypoxic SD (HSD), together with a detailed model of mitochondrial function and intracellular Ca2+ dynamics, we investigate mitochondrial dysfunction and its potential role in recovery of the neuron from seizures, HSD, and SD. Our results demonstrate that HSD leads to the collapse of mitochondrial membrane potential and cellular ATP levels that recover only when normal oxygen supply is restored. Mitochondrial organic phosphate and pH gradients determine the strength of the depolarization block during HSD and SD, how quickly the cell enters the depolarization block when the oxygen supply is disrupted or potassium in the bath solution is raised beyond the physiological value, and how fast the cell recovers from SD and HSD when normal potassium concentration and oxygen supply are restored. Although not as dramatic as phosphate and pH gradients, mitochondrial Ca2+ uptake has a similar effect on neuronal behavior during these conditions.


Spreading depolarization Seizures Mitochondrial dysfunction Ion concentrations Volume dynamics Hypoxia 



This study was supported by a startup grant from Collage of Arts and Sciences awarded to Ghanim Ullah.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary material

10827_2019_724_MOESM1_ESM.pdf (406 kb)
(PDF 406 KB)


  1. Aiba, I., & Noebels, J.L. (2015). Spreading depolarization in the brainstem mediates sudden cardiorespiratory arrest in mouse sudep models. Science Translational Medicine, 7(282), 282ra46–282ra46.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aitken, P.G., & Schiff, S.J. (1986). Selective neuronal vulnerability to hypoxia in vitro. Neuroscience Letters, 67(1), 92–96.CrossRefPubMedGoogle Scholar
  3. Aldakkak, M., Stowe, D.F., Heisner, J.S., Spence, M., Camara, A.K. (2008). Enhanced na+/h+ exchange during ischemia and reperfusion impairs mitochondrial bioenergetics and myocardial function. Journal of Cardiovascular Pharmacology, 52(3), 236.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anderson, T.R., & Andrew, R.D. (2002). Spreading depression: imaging and blockade in the rat neocortical brain slice. Journal of Neurophysiology, 88(5), 2713–2725.CrossRefPubMedGoogle Scholar
  5. Andersson, B., Aw, T., Jones, D.P. (1987). Mitochondrial transmembrane potential and ph gradient during anoxia. American Journal of Physiology-Cell Physiology, 252(4), C349–C355.CrossRefGoogle Scholar
  6. Andrew, R.D., Hsieh, Y.T., Brisson, C.D. (2017). Spreading depolarization triggered by elevated potassium is weak or absent in the rodent lower brain. Journal of Cerebral Blood Flow & Metabolism, 37(5), 1735–1747.CrossRefGoogle Scholar
  7. Attwell, D., & Laughlin, S.B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow & Metabolism, 21(10), 1133–1145.CrossRefGoogle Scholar
  8. Avoli, M., Drapeau, C., Louvel, J., Pumain, R., Olivier, A., Villemure, J.G. (1991). Epileptiform activity induced by low extracellular magnesium in the human cortex maintained in vitro. Annals of Neurology:, Official Journal of the American Neurological Association and the Child Neurology Society, 30(4), 589–596.CrossRefGoogle Scholar
  9. Ayata, C., & Lauritzen, M. (2015). Spreading depression, spreading depolarizations, and the cerebral vasculature. Physiological Reviews, 95(3), 953–993.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bahar, S., Fayuk, D., Somjen, G., Aitken, P., Turner, D. (2000). Mitochondrial and intrinsic optical signals imaged during hypoxia and spreading depression in rat hippocampal slices. Journal of Neurophysiology, 84 (1), 311–324.CrossRefPubMedGoogle Scholar
  11. Bahar, S., Suh, M., Zhao, M., Schwartz, T.H. (2006). Intrinsic optical signal imaging of neocortical seizures: the ?epileptic dip?. Neuroreport, 17(5), 499–503.CrossRefPubMedGoogle Scholar
  12. Bahari, F., Ssentongo, P., Liu, J., Kimbugwe, J., Schiff, S.J., Gluckman, B.J. (2018). Spreading depression and seizure unification experimentally observed in epilepsy. bioRxiv p 455519.Google Scholar
  13. Bayeva, M., Gheorghiade, M., Ardehali, H. (2013). Mitochondria as a therapeutic target in heart failure. Journal of the American College of Cardiology, 61(6), 599–610.CrossRefPubMedGoogle Scholar
  14. Bikson, M., Hahn, P.J., Fox, J.E., Jefferys, J.G. (2003). Depolarization block of neurons during maintenance of electrographic seizures. Journal of Neurophysiology, 90(4), 2402–2408.CrossRefPubMedGoogle Scholar
  15. Brisson, C.D., & Andrew, R.D. (2012). A neuronal population in hypothalamus that dramatically resists acute ischemic injury compared to neocortex. Journal of Neurophysiology, 108(2), 419–430.CrossRefPubMedGoogle Scholar
  16. Brisson, C.D., Lukewich, M.K., Andrew, R.D. (2013). A distinct boundary between the higher brain?s susceptibility to ischemia and the lower brain?s resistance. PloS One, 8(11), e79589.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Camara, A.K., Lesnefsky, E.J., Stowe, D.F. (2010). Potential therapeutic benefits of strategies directed to mitochondria. Antioxidants & Redox Signaling, 13(3), 279–347.CrossRefGoogle Scholar
  18. Chang, J.C., Brennan, K.C., He, D., Huang, H., Miura, R.M., Wilson, P.L., Wylie, J.J. (2013). A mathematical model of the metabolic and perfusion effects on cortical spreading depression. PloS One, 8(8), e70469.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cohen, P., Wollman, H., Alexander, S., Chase, P., Behar, M. (1964). Cerebral carbohydrate metabolism in man during halothane anesthesiaeffects of paco2 on some aspects of carbohydrate utilization. Anesthesiology:, The Journal of the American Society of Anesthesiologists, 25(2), 185–191.CrossRefGoogle Scholar
  20. Conte, C., Lee, R., Sarkar, M., Terman, D. (2018). A mathematical model of recurrent spreading depolarizations. Journal of Computational Neuroscience, 44(2), 203–217.CrossRefPubMedGoogle Scholar
  21. Cressman, J.R., Ullah, G., Ziburkus, J., Schiff, S.J., Barreto, E. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: i. single neuron dynamics. Journal of Computational Neuroscience, 26(2), 159–170.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Czéh, G., Aitken, P.G., Somjen, G.G. (1993). Membrane currents in CA1 pyramidal cells during spreading depression (SD) and SD-like hypoxic depolarization. Brain Research, 632(1-2), 195–208.CrossRefPubMedGoogle Scholar
  23. Diekman, C.O., Fall, C.P., Lechleiter, J.D., Terman, D. (2013). Modeling the neuroprotective role of enhanced astrocyte mitochondrial metabolism during stroke. Biophysical Journal, 104(8), 1752–1763.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dreier, J.P. (2011). The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nature Medicine, 17(4), 439.CrossRefPubMedGoogle Scholar
  25. Dreier, J.P., & Reiffurth, C. (2015). The stroke-migraine depolarization continuum. Neuron, 86(4), 902–922.CrossRefPubMedGoogle Scholar
  26. Dreier, J.P., Körner, K., Ebert, N., Görner, A., Rubin, I., Back, T., Lindauer, U., Wolf, T., Villringer, A., Einhäupl, K.M., et al. (1998). Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by N-nitro-L-arginine induces cortical spreading ischemia when k + is increased in the subarachnoid space. Journal of Cerebral Blood Flow & Metabolism, 18(9), 978–990.CrossRefGoogle Scholar
  27. Dreier, J.P., Major, S., Pannek, H.W., Woitzik, J., Scheel, M., Wiesenthal, D., Martus, P., Winkler, M.K., Hartings, J.A., Fabricius, M., et al. (2011). Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex. Brain: A Journal of Neurology, 135(1), 259–275.CrossRefGoogle Scholar
  28. Dreier, J.P., Isele, T., Reiffurth, C., Offenhauser, N., Kirov, S.A., Dahlem, M.A., Herreras, O. (2013). Is spreading depolarization characterized by an abrupt, massive release of gibbs free energy from the human brain cortex? The Neuroscientist, 19(1), 25–42.CrossRefPubMedGoogle Scholar
  29. Dreier, J.P., Fabricius, M., Ayata, C., Sakowitz, O.W., William Shuttleworth, C., Dohmen, C., Graf, R., Vajkoczy, P., Helbok, R., Suzuki, M., et al. (2017). Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: Review and recommendations of the cosbid research group. Journal of Cerebral Blood Flow & Metabolism, 37(5), 1595–1625.CrossRefGoogle Scholar
  30. Enger, R., Tang, W., Vindedal, G.F., Jensen, V., Johannes Helm, P., Sprengel, R., Looger, L.L., Nagelhus, E.A. (2015). Dynamics of ionic shifts in cortical spreading depression. Cerebral Cortex, 25(11), 4469–4476.CrossRefPubMedGoogle Scholar
  31. Fabricius, M., Fuhr, S., Willumsen, L., Dreier, J.P., Bhatia, R., Boutelle, M.G., Hartings, J.A., Bullock, R., Strong, A.J., Lauritzen, M. (2008). Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain. Clinical Neurophysiology, 119(9), 1973–1984.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Feuerstein, D., Backes, H., Gramer, M., Takagaki, M., Gabel, P., Kumagai, T., Graf, R. (2016). Regulation of cerebral metabolism during cortical spreading depression. Journal of Cerebral Blood Flow & Metabolism, 36(11), 1965–1977.CrossRefGoogle Scholar
  33. Friberg, H., & Wieloch, T. (2002). Mitochondrial permeability transition in acute neurodegeneration. Biochimie, 84(2-3), 241–250.CrossRefPubMedGoogle Scholar
  34. Gabriel, S., Njunting, M., Pomper, J.K., Merschhemke, M., Sanabria, E.R., Eilers, A., Kivi, A., Zeller, M., Meencke, H.J., Cavalheiro, E.A., et al. (2004). Stimulus and potassium-induced epileptiform activity in the human dentate gyrus from patients with and without hippocampal sclerosis. Journal of Neuroscience, 24(46), 10416–10430.CrossRefPubMedGoogle Scholar
  35. Galeffi, F., Somjen, G.G., Foster, K.A., Turner, D.A. (2011). Simultaneous monitoring of tissue po2 and nadh fluorescence during synaptic stimulation and spreading depression reveals a transient dissociation between oxygen utilization and mitochondrial redox state in rat hippocampal slices. Journal of Cerebral Blood Flow & Metabolism, 31 (2), 626–639.CrossRefGoogle Scholar
  36. Gault, L.M., Lin, C.W., LaManna, J.C., Lust, W.D. (1994). Changes in energy metabolites, cgmp and intracellular ph during cortical spreading depression. Brain Research, 641(1), 176–180.CrossRefPubMedGoogle Scholar
  37. Gloor, S.M. (1997). Relevance of Na,kA T P a s e to local extracellular potassium homeostasis and modulation of synaptic transmission. FEBS Letters, 412(1), 1–4.CrossRefPubMedGoogle Scholar
  38. Gloveli, T., Dugladze, T., Saha, S., Monyer, H., Heinemann, U., Traub, R.D., Whittington, M.A., Buhl, E.H. (2005). Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro. The Journal of Physiology, 562(1), 131–147.CrossRefPubMedGoogle Scholar
  39. Grinberg, Y.Y., van Drongelen, W., Kraig, R.P. (2012). Insulin-like growth factor-1 lowers spreading depression susceptibility and reduces oxidative stress. Journal of Neurochemistry, 122(1), 221–229.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Grinberg, Y.Y., Dibbern, M.E., Levasseur, V.A., Kraig, R.P. (2013). Insulin-like growth factor-1 abrogates microglial oxidative stress and TNF-α responses to spreading depression. Journal of Neurochemistry, 126(5), 662–672.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hablitz, J.J., & Heinemann, U. (1989). Alterations in the microenvironment during spreading depression associated with epileptiform activity in the immature neocortex. Developmental Brain Research, 46(2), 243–252.CrossRefPubMedGoogle Scholar
  42. Hansen, A. (1984). The role of spreading depression in acute brain disorders. Anais da Academia Brasileira de Ci?ncias, 56, 457–479.Google Scholar
  43. Hansen, A.J., & Zeuthen, T. (1981). Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiologica, 113(4), 437–445.CrossRefGoogle Scholar
  44. Hartings, J.A., Shuttleworth, C.W., Kirov, S.A., Ayata, C., Hinzman, J.M., Foreman, B., Andrew, R.D., Boutelle, M.G., Brennan, K., Carlson, A.P., et al. (2017). The continuum of spreading depolarizations in acute cortical lesion development: examining leão?s legacy. Journal of Cerebral Blood Flow & Metabolism, 37(5), 1571–1594.CrossRefGoogle Scholar
  45. Hawrysh, P.J., & Buck, L.T. (2019). Mitochondrial matrix ph acidifies during anoxia and is maintained by the f1f0-atp ase in anoxia-tolerant painted turtle cortical neurons. FEBS Open Bio pp.
  46. Hazelton, J.L., Petrasheuskaya, M., Fiskum, G., Kristián, T. (2009). Cyclophilin d is expressed predominantly in mitochondria of γ-aminobutyric acidergic interneurons. Journal of Neuroscience Research, 87(5), 1250–1259.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Homer, L.D., Shelton, J.B., Williams, T.J. (1983). Diffusion of oxygen in slices of rat brain. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 244(1), R15–R22.CrossRefGoogle Scholar
  48. Hosseini-Zare, M.S., Gu, F., Abdulla, A., Powell, S., žiburkus, J. (2017). Effects of experimental traumatic brain injury and impaired glutamate transport on cortical spreading depression. Experimental Neurology, 295, 155–161.CrossRefPubMedGoogle Scholar
  49. Hübel, N., & Dahlem, M.A. (2014). Dynamics from seconds to hours in hodgkin-huxley model with time-dependent ion concentrations and buffer reservoirs. PLos Computational Biology, 10(12), e1003941.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hübel, N., & Ullah, G. (2016). Anions govern cell volume: a case study of relative astrocytic and neuronal swelling in spreading depolarization. Plos One, 11(3), e0147060.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Hübel, N., Andrew, R.D., Ullah, G. (2016). Large extracellular space leads to neuronal susceptibility to ischemic injury in a na+/k+ pumps–dependent manner. Journal of Computational Neuroscience, 40(2), 177–192.CrossRefPubMedGoogle Scholar
  52. Hübel, N., Hosseini-Zare, M.S., žiburkus, J., Ullah, G. (2017). The role of glutamate in neuronal ion homeostasis: A case study of spreading depolarization. PLos Computational Biology, 13(10), e1005804.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ingram, J.M., Zhang, C., Xu, J., Schiff, S.J. (2013). Fret excited ratiometric oxygen sensing in living tissue. Journal of Neuroscience Methods, 214(1), 45–51.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Jing, J., Aitken, P.G., Somjen, G.G. (1994). Interstitial volume changes during spreading depression (SD) and SD-like hypoxic depolarization in hippocampal tissue slices. Journal of Neurophysiology, 71(6), 2548–2551.CrossRefPubMedGoogle Scholar
  55. Jitschin, R., Hofmann, A.D., Bruns, H., Gießl, A., Bricks, J., Berger, J., Saul, D., Eckart, M.J., Mackensen, A., Mougiakakos, D. (2014). Mitochondrial metabolism contributes to oxidative stress and reveals therapeutic targets in chronic lymphocytic leukemia. Blood, 123(17), 2663–2672.CrossRefPubMedGoogle Scholar
  56. Kager, H., Wadman, W., Somjen, G. (2000). Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. Journal of Neurophysiology, 84(1), 495–512.CrossRefPubMedGoogle Scholar
  57. Kager, H., Wadman, W., Somjen, G. (2002). Conditions for the triggering of spreading depression studied with computer simulations. Journal of Neurophysiology, 88(5), 2700–2712.CrossRefPubMedGoogle Scholar
  58. Kager, H., Wadman, W., Somjen, G. (2007). Seizure-like after discharges simulated in a model neuron. Journal of Computational Neuroscience, 22(2), 105–128.CrossRefPubMedGoogle Scholar
  59. Köhling, R., Koch, U., Hagemann, G., Redecker, C., Straub, H., Speckmann, E.J. (2003). Differential sensitivity to induction of spreading depression by partial disinhibition in chronically epileptic human and rat as compared to native rat neocortical tissue. Brain Research, 975(1-2), 129–134.CrossRefPubMedGoogle Scholar
  60. Kovács, R., Schuchmann, S., Gabriel, S., Kann, O., Kardos, J., Heinemann, U. (2002). Free radical–mediated cell damage after experimental status epilepticus in hippocampal slice cultures. Journal of Neurophysiology, 88(6), 2909–2918.CrossRefPubMedGoogle Scholar
  61. Kovács, R., Kardos, J., Heinemann, U., Kann, O. (2005). Mitochondrial calcium ion and membrane potential transients follow the pattern of epileptiform discharges in hippocampal slice cultures. Journal of Neuroscience, 25(17), 4260–4269.CrossRefPubMedGoogle Scholar
  62. Krishnan, G.P., & Bazhenov, M. (2011). Ionic dynamics mediate spontaneous termination of seizures and postictal depression state. Journal of Neuroscience, 31(24), 8870–8882.CrossRefPubMedGoogle Scholar
  63. Lauf, P.K., & Adragna, N.C. (2000). K − Cl cotransport: properties and molecular mechanism. Cellular Physiology and Biochemistry, 10(5-6), 341–354.CrossRefPubMedGoogle Scholar
  64. Lauritzen, M., Dreier, J.P., Fabricius, M., Hartings, J.A., Graf, R., Strong, A.J. (2011). Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. Journal of Cerebral Blood Flow & Metabolism, 31(1), 17–35.CrossRefGoogle Scholar
  65. Lee, B.H., Seo, H.W., Yi, K.Y., Lee, S., Lee, S., Yoo, S.E. (2005). Effects of kr-32570, a new na+/h+ exchanger inhibitor, on functional and metabolic impairments produced by global ischemia and reperfusion in the perfused rat heart. European Journal of Pharmacology, 511(2-3), 175–182.CrossRefPubMedGoogle Scholar
  66. Lennie, P. (2003). The cost of cortical computation. Current Biology, 13(6), 493–497.CrossRefPubMedGoogle Scholar
  67. Li, Y.X., & Rinzel, J. (1994). Equations for insp 3 receptor-mediated [C a 2+]i oscillations derived from a detailed kinetic model: a hodgkin-huxley like formalism. Journal of Theoretical Biology, 166(4), 461–473.CrossRefPubMedGoogle Scholar
  68. Lipton, P. (1999). Ischemic cell death in brain neurons. Physiological Reviews, 79(4), 1431–1568.CrossRefPubMedGoogle Scholar
  69. Liu, F., Lu, J., Manaenko, A., Tang, J., Hu, Q. (2018). Mitochondria in ischemic stroke: New insight and implications. Aging and Disease, 9(5), 924.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Lothman, E., LaManna, J., Cordingley, G., Rosenthal, M., Somjen, G. (1975). Responses of electrical potential, potassium levels, and oxidative metabolic activity of the cerebral neocortex of cats. Brain Research, 88(1), 15–36.CrossRefPubMedGoogle Scholar
  71. Magnus, G., & Keizer, J. (1997). Minimal model of beta-cell mitochondrial C a 2+ handling. American Journal of Physiology. Cell Physiology, 273(2), C717–C733.CrossRefGoogle Scholar
  72. Major, S., Petzold, G.C., Reiffurth, C., Windmüller, O., Foddis, M., Lindauer, U., Kang, E.J., Dreier, J.P. (2017). A role of the sodium pump in spreading ischemia in rats. Journal of Cerebral Blood Flow & Metabolism, 37(5), 1687–1705.CrossRefGoogle Scholar
  73. Mayevsky, A., Zarchin, N., Friedli, C.M. (1982). Factors affecting the oxygen balance in the awake cerebral cortex exposed to spreading depression. Brain Research, 236(1), 93–105.CrossRefPubMedGoogle Scholar
  74. Mody, I., Lambert, J., Heinemann, U. (1987). Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices. Journal of Neurophysiology, 57(3), 869–888.CrossRefPubMedGoogle Scholar
  75. Murphy, M.P., & Hartley, R.C. (2018). Mitochondria as a therapeutic target for common pathologies. Nature Reviews Drug Discovery.Google Scholar
  76. Nicholls, D.G., & Budd, S.L. (2000). Mitochondria and neuronal survival. Physiological Reviews, 80(1), 315–360.CrossRefPubMedGoogle Scholar
  77. Østby, I., Øyehaug, L., Einevoll, G.T., Nagelhus, E.A., Plahte, E., Zeuthen, T., Lloyd, C.M., Ottersen, O.P., Omholt, S.W. (2009). Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space. PLos Computational Biology, 5(1), e1000272.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Øyehaug, L., Østby, I., Lloyd, C.M., Omholt, S.W., Einevoll, G.T. (2012). Dependence of spontaneous neuronal firing and depolarisation block on astroglial membrane transport mechanisms. Journal of Computational Neuroscience, 32(1), 147–165.CrossRefPubMedGoogle Scholar
  79. Payne, J.A., Rivera, C., Voipio, J., Kaila, K. (2003). Cation–chloride co-transporters in neuronal communication, development and trauma. Trends in Neurosciences, 26(4), 199–206.CrossRefPubMedGoogle Scholar
  80. Piilgaard, H., Witgen, B.M., Rasmussen, P., Lauritzen, M. (2011). Cyclosporine a, FK506, and NIM811 ameliorate prolonged cbf reduction and impaired neurovascular coupling after cortical spreading depression. Journal of Cerebral Blood Flow & Metabolism, 31(7), 1588–1598.CrossRefGoogle Scholar
  81. Pomper, J.K., Haack, S., Petzold, G.C., Buchheim, K., Gabriel, S., Hoffmann, U., Heinemann, U. (2006). Repetitive spreading depression-like events result in cell damage in juvenile hippocampal slice cultures maintained in normoxia. Journal of Neurophysiology.Google Scholar
  82. Rosenthal, M., & Martel, D.L. (1979). Ischemia-induced alterations in oxidative ?recovery? metabolism after spreading cortical depression in situ. Experimental Neurology, 63(2), 367–378.CrossRefPubMedGoogle Scholar
  83. Russo, E., Nguyen, H., Lippert, T., Tuazon, J., Borlongan, C.V., Napoli, E. (2018). Mitochondrial targeting as a novel therapy for stroke. Brain Circulation, 4(3), 84.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Scanlon, J., Brocard, J., Stout, A., Reynolds, I. (2000). Pharmacological investigation of mitochondrial C a 2+ transport in central neurons: studies with CGP-37157, an inhibitor of the mitochondrial na +C a 2+ exchanger. Cell Calcium, 28(5-6), 317–327.CrossRefPubMedGoogle Scholar
  85. Schechter, M., Sonn, J., Mayevsky, A. (2009). Brain oxygen balance under various experimental pathophysiologycal conditions. In Oxygen Transport to Tissue (pp. 293–299). Berlin: Springer.Google Scholar
  86. Schild, L., Blair, P.V., Davis, W.I., Baugh, S. (1999). Effect of adenine nucleotide pool size in mitochondria on intramitochondrial ATP levels. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1413(1), 14–20.CrossRefGoogle Scholar
  87. Somjen, G.G. (2001). Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiological Reviews, 81(3), 1065–1096.CrossRefPubMedGoogle Scholar
  88. Somjen, G.G. (2004). Ions in the brain New york: Oxford UP.Google Scholar
  89. Sonn, J., & Mayevsky, A. (2000). Effects of brain oxygenation on metabolic, hemodynamic, ionic and electrical responses to spreading depression in the rat. Brain Research, 882(1-2), 212–216.CrossRefPubMedGoogle Scholar
  90. Syková, E., & Nicholson, C. (2008). Diffusion in brain extracellular space. Physiological Reviews, 88(4), 1277–1340.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Toglia, P., & Ullah, G. (2016). The gain-of-function enhancement of IP3-receptor channel gating by familial Alzheimer s disease-linked presenilin mutants increases the open probability of mitochondrial permeability transition pore. Cell Calcium, 60 (1), 13–24.CrossRefPubMedGoogle Scholar
  92. Toglia, P., Cheung, K.H., Mak, D.O.D., Ullah, G. (2016). Impaired mitochondrial function due to familial Alzheimer s disease-causing presenilins mutants via C a 2+ disruptions. Cell Calcium, 59(5), 240–250.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Toglia, P., Demuro, A., Mak, D.O.D., Ullah, G. (2018). Data-driven modeling of mitochondrial dysfunction in alzheimer’s disease. Cell Calcium, 76, 23–35.CrossRefPubMedGoogle Scholar
  94. Traub, R.D., Jefferys, J., Miles, R., Whittington, M.A., Tóth, K. (1994). A branching dendritic model of a rodent CA3 pyramidal neurone. The Journal of Physiology, 481(1), 79–95.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Traynelis, S.F., & Dingledine, R. (1988). Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. Journal of Neurophysiology, 59(1), 259–276.CrossRefPubMedGoogle Scholar
  96. Ullah, G., Jung, P., Cornell-Bell, A.H. (2006). Anti-phase calcium oscillations in astrocytes via inositol (1, 4, 5)-trisphosphate regeneration. Cell Calcium, 39(3), 197–208.CrossRefPubMedGoogle Scholar
  97. Ullah, G., Cressman, J.R. Jr, Barreto, E., Schiff, S.J. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: Ii. network and glial dynamics. Journal of Computational Neuroscience, 26(2), 171–183.CrossRefPubMedGoogle Scholar
  98. Ullah, G., Wei, Y., Dahlem, M.A., Wechselberger, M., Schiff, S.J. (2015). The role of cell volume in the dynamics of seizure, spreading depression, and anoxic depolarization. PLos Computational Biology, 11(8), e1004414.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Vaillend, C., Mason, S.E., Cuttle, M.F., Alger, B.E. (2002). Mechanisms of neuronal hyperexcitability caused by partial inhibition of na+-k+-atpases in the rat ca1 hippocampal region. Journal of Neurophysiology, 88 (6), 2963–2978.CrossRefPubMedGoogle Scholar
  100. Wacquier, B., Combettes, L., Van Nhieu, G.T., Dupont, G. (2016). Interplay between intracellular C a 2+ oscillations and C a 2+-stimulated mitochondrial metabolism. Scientific Reports, 6, 19316.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Waldmeier, P.C., Feldtrauer, J.J., Qian, T., Lemasters, J.J. (2002). Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811. Molecular Pharmacology, 62(1), 22–29.CrossRefPubMedGoogle Scholar
  102. Wang, J., Chambers, G., Cottrell, J., Kass, I. (2000). Differential fall in ATP accounts for effects of temperature on hypoxic damage in rat hippocampal slices. Journal of Neurophysiology, 83(6), 3462–3472.CrossRefPubMedGoogle Scholar
  103. Wasterlain, C.G., Thompson, K.W., Suchomelova, L., Niquet, J. (2010). Brain energy metabolism during experimental neonatal seizures. Neurochemical Research, 35(12), 2193–2198.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Wei, Y., Ullah, G., Ingram, J., Schiff, S.J. (2014a). Oxygen and seizure dynamics: II. computational modeling. Journal of Neurophysiology, 112(2), 213–223.CrossRefPubMedPubMedCentralGoogle Scholar
  105. Wei, Y., Ullah, G., Schiff, S.J. (2014b). Unification of neuronal spikes, seizures, and spreading depression. Journal of Neuroscience, 34(35), 11733–11743.CrossRefPubMedGoogle Scholar
  106. Yang, H., Wu, J., Guo, R., Peng, Y., Zheng, W., Liu, D., Song, Z. (2013). Glycolysis in energy metabolism during seizures. Neural Regeneration Research, 8(14), 1316.PubMedPubMedCentralGoogle Scholar
  107. Zhang, Y., & Lipton, P. (1999). Cytosolic C a 2+ changes during in vitroischemia in rat hippocampal slices: Major roles for glutamate and na +-dependent C a 2+ release from mitochondria. Journal of Neuroscience, 19(9), 3307–3315.CrossRefPubMedGoogle Scholar
  108. Zhou, N., Gordon, G.R., Feighan, D., MacVicar, B.A. (2010). Transient swelling, acidification, and mitochondrial depolarization occurs in neurons but not astrocytes during spreading depression. Cerebral Cortex, 20 (11), 2614–2624.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of South FloridaTampaUSA

Personalised recommendations