Differences in MEG and EEG power-law scaling explained by a coupling between spatial coherence and frequency: a simulation study

  • C . G. BénarEmail author
  • C. Grova
  • V. K. Jirsa
  • J. M. Lina


Electrophysiological signals (electroencephalography, EEG, and magnetoencephalography, MEG), as many natural processes, exhibit scale-invariance properties resulting in a power-law (1/f) spectrum. Interestingly, EEG and MEG differ in their slopes, which could be explained by several mechanisms, including non-resistive properties of tissues. Our goal in the present study is to estimate the impact of space/frequency structure of source signals as a putative mechanism to explain spectral scaling properties of neuroimaging signals. We performed simulations based on the summed contribution of cortical patches with different sizes (ranging from 0.4 to 104.2 cm2). Small patches were attributed signals of high frequencies, whereas large patches were associated with signals of low frequencies, on a logarithmic scale. The tested parameters included i) the space/frequency structure (range of patch sizes and frequencies) and ii) the amplitude factor c parametrizing the spatial scale ratios. We found that the space/frequency structure may cause differences between EEG and MEG scale-free spectra that are compatible with real data findings reported in previous studies. We also found that below a certain spatial scale, there were no more differences between EEG and MEG, suggesting a limit for the resolution of both methods.Our work provides an explanation of experimental findings. This does not rule out other mechanisms for differences between EEG and MEG, but suggests an important role of spatio-temporal structure of neural dynamics. This can help the analysis and interpretation of power-law measures in EEG and MEG, and we believe our results can also impact computational modeling of brain dynamics, where different local connectivity structures could be used at different frequencies.


Power-law spectrum EEG MEG Biophysical model Scale-free dynamics 



CGB thanks Jean Gotman for useful discussions on spatial coherence. Research supported by grants ANR-16-CONV-0002 (ILCB) and ANR-11-IDEX-0001-02 (A*MIDEX)“. This work has been carried out within the FHU EPINEXT with the support of the A*MIDEX project (ANR-11-IDEX-0001-02) funded by the “Investissements d’Avenir“ French Governement program managed by the French National Research Agency (ANR). Part of this work was funded by a joint Agence Nationale de la Recherche (ANR) and Direction Génerale de l’Offre de Santé (DGOS) under grant “VIBRATIONS” ANR-13-PRTS-0011-01. Part of this work was funded by a FLAG ERA/HBP grant from Agence Nationale de la Recherche "SCALES" ANR-17-HBPR-0005. This work was performed within a platform member of France Life Imaging network (grant ANR-11-INBS-0006).

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. Ahlfors, S. P., Han, J., Lin, F. H., Witzel, T., Belliveau, J. W., Hamalainen, M. S., et al. (2010). Cancellation of EEG and MEG signals generated by extended and distributed sources. Human Brain Mapping, 31(1), 140–149. Scholar
  2. Atasoy, S., Donnelly, I., & Pearson, J. (2016). Human brain networks function in connectome-specific harmonic waves. Nature Communications, 7, 10340. Scholar
  3. Bangera, N. B., Schomer, D. L., Dehghani, N., Ulbert, I., Cash, S., Papavasiliou, S., Eisenberg, S. R., Dale, A. M., & Halgren, E. (2010). Experimental validation of the influence of white matter anisotropy on the intracranial EEG forward solution. Journal of Computational Neuroscience, 29(3), 371–387. Scholar
  4. Bullock, T. H., & McClune, M. C. (1989). Lateral coherence of the electrocorticogram: A new measure of brain synchrony. Electroencephalography and Clinical Neurophysiology, 73(6), 479–498.CrossRefGoogle Scholar
  5. Bullock, T. H., McClune, M. C., Achimowicz, J. Z., Iragui-Madoz, V. J., Duckrow, R. B., & Spencer, S. S. (1995). EEG coherence has structure in the millimeter domain: Subdural and hippocampal recordings from epileptic patients. Electroencephalography and Clinical Neurophysiology, 95(3), 161–177.CrossRefGoogle Scholar
  6. Buzsaki, G. (2006). Rhythms of the brain.Google Scholar
  7. Buzsaki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nature Reviews. Neuroscience, 13(6), 407–420. Scholar
  8. Ciuciu, P., Abry, P., & He, B. J. (2014). Interplay between functional connectivity and scale-free dynamics in intrinsic fMRI networks. Neuroimage, 95, 248–263. Scholar
  9. Cointepas, Y., Geffroy, D., Souedet, N., Denghien, I., & Rivière, D. (2010). The BrainVISA project: A shared software development infrastructure for biomedical imaging research.Google Scholar
  10. Cosandier-Rimélé, D., Badier, J. M., Chauvel, P., & Wendling, F. (2007). Modeling and interpretation of scalp-EEG and depth-EEG signals during interictal activity. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 4277–4280. Scholar
  11. Dehghani, N., Bedard, C., Cash, S. S., Halgren, E., & Destexhe, A. (2010). Comparative power spectral analysis of simultaneous elecroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media. Journal of Computational Neuroscience, 29(3), 405–421. Scholar
  12. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. Scholar
  13. Destexhe, A., Contreras, D., & Steriade, M. (1999). Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. The Journal of Neuroscience, 19(11), 4595–4608.CrossRefGoogle Scholar
  14. Freeman, W. J. (2005). A field-theoretic approach to understanding scale-free neocortical dynamics. Biological Cybernetics, 92(6), 350–359. Scholar
  15. Gavaret, M., Badier, J. M., Bartolomei, F., Benar, C. G., & Chauvel, P. (2014). MEG and EEG sensitivity in a case of medial occipital epilepsy. Brain Topography, 27(1), 192–196. Scholar
  16. Gramfort, A., Papadopoulo, T., Olivi, E., & Clerc, M. (2010). OpenMEEG: Opensource software for quasistatic bioelectromagnetics. Biomedical Engineering Online, 9, 45. CrossRefPubMedCentralGoogle Scholar
  17. Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). Magnetoencephalography—Theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65, 414–497.CrossRefGoogle Scholar
  18. He, B. J. (2014). Scale-free brain activity: Past, present, and future. Trends in Cognitive Sciences, 18(9), 480–487. Scholar
  19. Jirsa, V. K. (2009). Neural field dynamics with local and global connectivity and time delay. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 367(1891), 1131–1143. Scholar
  20. Khodagholy, D., Doublet, T., Gurfinkel, M., Quilichini, P., Ismailova, E., Leleux, P., Herve, T., Sanaur, S., Bernard, C., & Malliaras, G. G. (2011). Highly conformable conducting polymer electrodes for in vivo recordings. Advanced Materials, 23(36), H268–H272. Scholar
  21. Miller, K. J., Sorensen, L. B., Ojemann, J. G., & den Nijs, M. (2009). Power-law scaling in the brain surface electric potential. PLoS Computational Biology, 5(12), e1000609. Scholar
  22. Muthukumaraswamy, S. D., & Singh, K. D. (2013). Visual gamma oscillations: The effects of stimulus type, visual field coverage and stimulus motion on MEG and EEG recordings. Neuroimage, 69, 223–230. Scholar
  23. Nelson, M. J., & Pouget, P. (2012). Physical model of coherent potentials measured with different electrode recording site sizes. Journal of Neurophysiology, 107(5), 1291–1300. Scholar
  24. Nunez, P., & Srinivasan, R. (2005). Electric fields of the brain: The Neurophysics of EEG. Oxford: Oxford University Press.Google Scholar
  25. Nunez, P. L. (2000). Toward a quantitative description of large-scale neocortical dynamic function and EEG. Behavioral and Brain Sciences, 23(3), 371–37+. Scholar
  26. Pesaran, B., Vinck, M., Einevoll, G. T., Sirota, A., Fries, P., Siegel, M., Truccolo, W., Schroeder, C. E., & Srinivasan, R. (2018). Investigating large-scale brain dynamics using field potential recordings: Analysis and interpretation. Nature Neuroscience, 21(7), 903–919. Scholar
  27. Pfurtscheller, G., & Cooper, R. (1975). Frequency dependence of the transmission of the EEG from cortex to scalp. Electroencephalography and Clinical Neurophysiology, 38(1), 93–96.CrossRefGoogle Scholar
  28. Roehri, N., Lina, J. M., Mosher, J. C., Bartolomei, F., & Benar, C. G. (2016). Time-frequency strategies for increasing high frequency oscillation detectability in intracerebral EEG. IEEE Transactions on Biomedical Engineering, 63(99), 1–2606. Scholar
  29. Sanz-Leon, P., Knock, S. A., Spiegler, A., & Jirsa, V. K. (2015). Mathematical framework for large-scale brain network modeling in the virtual brain. Neuroimage, 111, 385–430. Scholar
  30. Sanz Leon, P., Knock, S. A., Woodman, M. M., Domide, L., Mersmann, J., McIntosh, A. R., & Jirsa, V. (2013). The virtual brain: A simulator of primate brain network dynamics. Frontiers in Neuroinformatics, 7, 10. Scholar
  31. Srinivasan, R., Winter, W. R., Ding, J., & Nunez, P. L. (2007). EEG and MEG coherence: Measures of functional connectivity at distinct spatial scales of neocortical dynamics. Journal of Neuroscience Methods, 166(1), 41–52. Scholar
  32. Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: A user-friendly application for MEG/EEG analysis. Computational Intelligence and Neuroscience, 2011, 879716. Scholar
  33. von Ellenrieder, N., Dan, J., Frauscher, B., & Gotman, J. (2016). Sparse asynchronous cortical generators can produce measurable scalp EEG signals. Neuroimage, 138, 123–133. Scholar
  34. von Stein, A., & Sarnthein, J. (2000). Different frequencies for different scales of cortical integration: From local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology, 38(3), 301–313.CrossRefGoogle Scholar
  35. Wirsich, J., Perry, A., Ridley, B., Proix, T., Golos, M., Benar, C., et al. (2016). Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy. Neuroimage Clin, 11, 707–718. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Aix Marseille Univ, INSERMINS, Inst Neurosci SystMarseilleFrance
  2. 2.PERFORM Centre and Physics DepartmentConcordia UniversityMontrealCanada
  3. 3.Montreal Neurological Institute and HospitalMcGill UniversityMontrealCanada
  4. 4.Multimodal Functional Imaging Laboratory, Biomedical Engineering DepartmentMcGill UniversityMontrealCanada
  5. 5.Centre de Recherches MathématiquesMontrealCanada
  6. 6.Département de Génie ÉlectriqueÉcole de Technologie SupérieureMontrealCanada
  7. 7.Centre d’Etudes Avancées en Médecine du SommeilHôpital Sacré CœurMontrealCanada

Personalised recommendations