Advertisement

Predicting state transitions in brain dynamics through spectral difference of phase-space graphs

  • Patrick Luckett
  • Elena Pavelescu
  • Todd McDonald
  • Lee Hively
  • Juan Ochoa
Article

Abstract

Networks are naturally occurring phenomena that are studied across many disciplines. The topological features of a network can provide insight into the dynamics of a system as it evolves, and can be used to predict changes in state. The brain is a complex network whose temporal and spatial behavior can be measured using electroencephalography (EEG). This data can be reconstructed to form a family of graphs that represent the state of the brain over time, and the evolution of these graphs can be used to predict changes in brain states, such as the transition from preictal to ictal in patients with epilepsy. This research proposes objective indications of seizure onset observed from minimally invasive scalp EEG. The approach considers the brain as a complex nonlinear dynamical system whose state can be derived through time-delay embedding of the EEG data and characterized to determine change in brain dynamics related to the preictal state. This method targets phase-space graph spectra as biomarkers for seizure prediction, correlates historical degrees of change in spectra, and makes accurate prediction of seizure onset. A significant trend of normalized dissimilarity over time indicates a departure from the norm, and thus a change in state. Our methods show high sensitivity (90–100%) and specificity (90%) on 241 h of scalp EEG training data, and sensitivity and specificity of 70%–90% on test data. Moreover, the algorithm was capable of processing 12.7 min of data per second on an Intel Core i3 CPU in Matlab, showing that real-time analysis is viable.

Keywords

Graph spectra Epilepsy Seizure prediction Phase-space graph analysis 

Notes

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. Acharya, U.R., Sree, S.V., Ang, P.C.A., Yanti, R., Suri, J.S. (2012). Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. International Journal of Neural Systems, 22(2), 1250,002.CrossRefGoogle Scholar
  2. Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger, C.E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Physical Review E, 64(6), 061,907.CrossRefGoogle Scholar
  3. Ashbee, W.S., Hively, L., McDonald, J. (2014). Nonlinear epilepsy forewarning by support vector machines. In Epilepsy topics: InTech.Google Scholar
  4. Badawy, R., Macdonell, R., Jackson, G., Berkovic, S. (2009). The peri-ictal state: cortical excitability changes within 24 h of a seizure. Brain, 132(4), 1013–1021.CrossRefGoogle Scholar
  5. Bandarabadi, M., Teixeira, C.A., Rasekhi, J., Dourado, A. (2015). Epileptic seizure prediction using relative spectral power features. Clinical Neurophysiology, 126(2), 237–248.CrossRefGoogle Scholar
  6. Barriga-Paulino, C.I., Flores, A.B., Gómez, C.M. (2011). Developmental changes in the eeg rhythms of children and young adults. Journal of Psychophysiology, 25(3), 143–158.CrossRefGoogle Scholar
  7. Bollobás, B. (2013). Modern graph theory, vol. 184. Springer Science & Business Media.Google Scholar
  8. Brouwer, A.E., & Haemers, W.H. (2012). Distance-regular graphs. Berlin: Springer.CrossRefGoogle Scholar
  9. Carney, P.R., Myers, S., Geyer, J.D. (2011). Seizure prediction: methods. Epilepsy & Behavior, 22, S94–S101.CrossRefGoogle Scholar
  10. Chandola, V., Banerjee, A., Kumar, V. (2009). Anomaly detection: a survey. ACM Computing Surveys (CSUR), 41(3), 15.CrossRefGoogle Scholar
  11. Cho, D., Min, B., Kim, J., Lee, B. (2017). Eeg-based prediction of epileptic seizures using phase synchronization elicited from noise-assisted multivariate empirical mode decomposition. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(8), 1309–1318.CrossRefGoogle Scholar
  12. Chu, H., Chung, C.K., Jeong, W., Cho, K.H. (2017). Predicting epileptic seizures from scalp EEG based on attractor state analysis. Computer Methods and Programs in Biomedicine, 143, 75–87.CrossRefGoogle Scholar
  13. Cook, M.J., O’Brien, T.J., Berkovic, S.F., Murphy, M., Morokoff, A., Fabinyi, G., D’Souza, W., Yerra, R., Archer, J., Litewka, L., et al. (2013). Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. The Lancet Neurology, 12(6), 563–571.CrossRefGoogle Scholar
  14. Cook, M.J., Varsavsky, A., Himes, D., Leyde, K., Berkovic, S.F., O’Brien, T., Mareels, I. (2014). The dynamics of the epileptic brain reveal long-memory processes. Frontiers in Neurology, 5, 217.Google Scholar
  15. Demmel, J., Dumitriu, I., Holtz, O. (2007). Fast linear algebra is stable. Numerische Mathematik, 108 (1), 59–91.CrossRefGoogle Scholar
  16. Epilepsy Foundation of Michigan. (2011). http://www.epilepsymichigan.org/page.php?id=358. Website.
  17. Fraleigh, J., Beauregard, R., Katz, V. (1995). Linear Algebra, vol. 53.Google Scholar
  18. Freestone, D.R., Karoly, P.J., Cook, M.J. (2017). A forward-looking review of seizure prediction. Current Opinion in Neurology, 30(2), 167–173.CrossRefGoogle Scholar
  19. Gadhoumi, K., Gotman, J., Lina, J.M. (2015). Scale invariance properties of intracerebral EEG improve seizure prediction in mesial temporal lobe epilepsy. PloS One, 10(4), e0121,182.CrossRefGoogle Scholar
  20. Gadhoumi, K., Lina, J.M., Mormann, F., Gotman, J. (2016). Seizure prediction for therapeutic devices: a review. Journal of Neuroscience Methods, 260, 270–282.CrossRefGoogle Scholar
  21. Gantmacher, F.R. (1960). Theory of matrices. 2V. New York: Chelsea.Google Scholar
  22. Ghaderyan, P., Abbasi, A., Sedaaghi, M.H. (2014). An efficient seizure prediction method using knn-based undersampling and linear frequency measures. Journal of Neuroscience Methods, 232, 134–142.CrossRefGoogle Scholar
  23. Haemers, W.H., & Spence, E. (2004). Enumeration of cospectral graphs. European Journal of Combinatorics, 25(2), 199–211.CrossRefGoogle Scholar
  24. Henry, B., Lovell, N., Camacho, F. (2012). Nonlinear dynamics time series analysis. Nonlinear Biomedical Signal Processing: Dynamic Analysis and Modeling, 2, 1–39.Google Scholar
  25. Hively, L. (2009). Prognostication of helicopter failure. ORNL/TM-2009, vol. 244.Google Scholar
  26. Hively, L.M., & Ng, E.G. (1998). Integrated method for chaotic time series analysis. US Patent 5,815,413.Google Scholar
  27. Hively, L., Clapp, N., Daw, C., Lawkins, W., Eisenstadt, M. (1995). Nonlinear analysis of EEG for epileptic seizures. ORNL/TM-12961, Oak Ridge National Laboratory, Oak Ridge.Google Scholar
  28. Hively, L.M., Protopopescu, V.A., Munro, N.B. (2005). Enhancements in epilepsy forewarning via phase-space dissimilarity. Journal of Clinical Neurophysiology, 22(6), 402–409.PubMedGoogle Scholar
  29. Hively, L.M., McDonald, J.T., Munro, N., Cornelius, E. (2013). Forewarning of epileptic events from scalp EEG. In Biomedical sciences and engineering conference (BSEC), 2013 (pp. 1–4): IEEE.Google Scholar
  30. Huang, X., Altahat, S., Tran, D., Sharma, D. (2012). Human identification with electroencephalogram (eeg) signal processing. In 2012 International symposium on communications and information technologies (ISCIT) (pp. 1021–1026). IEEE.Google Scholar
  31. Ibrahim, S.W., Djemal, R., Alsuwailem, A., Gannouni, S. (2017). Electroencephalography (eeg)-based epileptic seizure prediction using entropy and k-nearest neighbor (knn). Communications in Science and Technology, 2(1), 6–10.CrossRefGoogle Scholar
  32. Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.J. (2000). Principles of neural science (Vol. 4). New York: McGraw-Hill.Google Scholar
  33. Kannathal, N., Min, L., Acharya, U., Sadasivan, P. (2006). Erratum: Entropies for detection of epilepsy in EEG (computer methods and programs in biomedicine (2005) 80(187–194).  https://doi.org/10.1016/j.cmpb.2005.06.012.CrossRefGoogle Scholar
  34. Kantz, H., & Schreiber, T. (2004). Nonlinear time series analysis (Vol. 7). Cambridge: Cambridge University Press.Google Scholar
  35. Karoly, P.J., Freestone, D.R., Boston, R., Grayden, D.B., Himes, D., Leyde, K., Seneviratne, U., Berkovic, S., O’Brien, T., Cook, M.J. (2016). Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity. Brain, 139(4), 1066–1078.CrossRefGoogle Scholar
  36. Kiral-Kornek, I., Roy, S., Nurse, E., Mashford, B., Karoly, P., Carroll, T., Payne, D., Saha, S., Baldassano, S., O’Brien, T., et al. (2017). Epileptic seizure prediction using big data and deep learning: toward a mobile system. EBioMedicine, 27, 103–111.CrossRefGoogle Scholar
  37. Li, S., Zhou, W., Yuan, Q., Liu, Y. (2013). Seizure prediction using spike rate of intracranial EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(6), 880–886.CrossRefGoogle Scholar
  38. Litt, B., Esteller, R., Echauz, J., D’Alessandro, M., Shor, R., Henry, T., Pennell, P., Epstein, C., Bakay, R., Dichter, M., et al. (2001). Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. Neuron, 30(1), 51–64.CrossRefGoogle Scholar
  39. Luckett, P., McDonald, J.T., Hively, L.M. (2017). Dissimilarity of graph invariant features from EEG phase-space analysis. Computer Engineering and Information Technology, 6(3).Google Scholar
  40. Martis, R.J., Acharya, U.R., Tan, J.H., Petznick, A., Tong, L., Chua, C.K., Ng, E.Y.K. (2013). Application of intrinsic time-scale decomposition (itd) to EEG signals for automated seizure prediction. International Journal of Neural Systems, 23(5), 1350,023.CrossRefGoogle Scholar
  41. Meghdadi, A.H., Fazel-Rezai, R., Aghakhani, Y. (2017). Seizure prediction by nonlinear smoothness analysis of scalp eeg recording. CMBES Proceedings, 30(1).Google Scholar
  42. Mormann, F., Elger, C.E., Lehnertz, K. (2006). Seizure anticipation: from algorithms to clinical practice. Current Opinion in Neurology, 19(2), 187–193.CrossRefGoogle Scholar
  43. Mormann, F., Andrzejak, R.G., Elger, C.E., Lehnertz, K. (2007). Seizure prediction: the long and winding road. Brain, 130(2), 314–333.CrossRefGoogle Scholar
  44. Namazi, H., Kulish, V.V., Hussaini, J., Hussaini, J., Delaviz, A., Delaviz, F., Habibi, S., Ramezanpoor, S. (2016). A signal processing based analysis and prediction of seizure onset in patients with epilepsy. Oncotarget, 7(1), 342.CrossRefGoogle Scholar
  45. Nan, X., & Jinghua, X. (1988). The fractal dimension of EEG as a physical measure of conscious human brain activities. Bulletin of Mathematical Biology, 50(5), 559–565.CrossRefGoogle Scholar
  46. Osorio, I., Frei, M.G., Sornette, D., Milton, J. (2009). Pharmaco-resistant seizures: self-triggering capacity, scale-free properties and predictability? European Journal of Neuroscience, 30(8), 1554–1558.CrossRefGoogle Scholar
  47. Osorio, I., Zaveri, H.P., Frei, M.G., Arthurs, S. (2016). Epilepsy: the intersection of neurosciences, biology, mathematics, engineering, and physics. Boca Raton: CRC Press.Google Scholar
  48. Pauletti, A., Terrone, G., Shekh-Ahmad, T., Salamone, A., Ravizza, T., Rizzi, M., Pastore, A., Pascente, R., Liang, L.P., Villa, B.R., et al. (2017). Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain, 140(7), 1885–1899.CrossRefGoogle Scholar
  49. Sackellares, J.C. (2008). Seizure prediction. Epilepsy Currents, 8(3), 55–59.CrossRefGoogle Scholar
  50. Sayama, H. (2015). Introduction to the modeling and analysis of complex systems. Open SUNY Textbooks.Google Scholar
  51. Takens, F. (1981). Detecting strange attractors in turbulence. In Dynamical systems and turbulence, Warwick 1980 (pp. 366–381). Berlin: Springer.Google Scholar
  52. Truccolo, W., Donoghue, J.A., Hochberg, L.R., Eskandar, E.N., Madsen, J.R., Anderson, W.S., Brown, E.N., Halgren, E., Cash, S.S. (2011). Single-neuron dynamics in human focal epilepsy. Nature Neuroscience, 14(5), 635–641.CrossRefGoogle Scholar
  53. Vahabi, Z., Amirfattahi, R., Shayegh, F., Ghassemi, F. (2015). Online epileptic seizure prediction using wavelet-based bi-phase correlation of electrical signals tomography. International Journal of Neural Systems, 25(6), 1550,028.CrossRefGoogle Scholar
  54. Viglione, S., & Walsh, G. (1975). Proceedings: epileptic seizure prediction. Electroencephalography and Clinical Neurophysiology, 39(4), 435.PubMedGoogle Scholar
  55. Wang, S., Chaovalitwongse, W.A., Wong, S. (2013). Online seizure prediction using an adaptive learning approach. IEEE Transactions on Knowledge and Data Engineering, 25(12), 2854–2866.CrossRefGoogle Scholar
  56. Williamson, J.R., Bliss, D.W., Browne, D.W., Narayanan, J.T. (2012). Seizure prediction using EEG spatiotemporal correlation structure. Epilepsy & Behavior, 25(2), 230–238.CrossRefGoogle Scholar
  57. Wilson, R.C., & Zhu, P. (2008). A study of graph spectra for comparing graphs and trees. Pattern Recognition, 41(9), 2833–2841.CrossRefGoogle Scholar
  58. World Health Organization. (2014). World health organization. http://www.who.int/mediacentre/factsheets/fs999/en/. Website.
  59. Xiao, C., Wang, S., Iasemidis, L., Wong, S., Chaovalitwongse, W.A. (2017). An adaptive pattern learning framework to personalize online seizure prediction. IEEE Transactions on Big Data, (1), 1-1.Google Scholar
  60. Yang, Y., Wang, Y., Wu, Q.J., Lin, X., Liu, M. (2015). Progressive learning machine: a new approach for general hybrid system approximation. IEEE Transactions on Neural Networks and Learning Systems, 26(9), 1855–1874.CrossRefGoogle Scholar
  61. Yoo, Y. (2017). On predicting epileptic seizures from intracranial electroencephalography. Biomedical Engineering Letters, 7(1), 1–5.CrossRefGoogle Scholar
  62. Zandi, A.S., Tafreshi, R., Javidan, M., Dumont, G.A. (2010). Predicting temporal lobe epileptic seizures based on zero-crossing interval analysis in scalp EEG. In 2010 annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 5537–5540). IEEE.Google Scholar
  63. Zappasodi, F., Olejarczyk, E., Marzetti, L., Assenza, G., Pizzella, V., Tecchio, F. (2014). Fractal dimension of EEG activity senses neuronal impairment in acute stroke. PLoS One, 9(6), e100,199.CrossRefGoogle Scholar
  64. Zheng, Y., Wang, G., Li, K., Bao, G., Wang, J. (2014). Epileptic seizure prediction using phase synchronization based on bivariate empirical mode decomposition. Clinical Neurophysiology, 125(6), 1104–1111.CrossRefGoogle Scholar
  65. Zheng, Y., Zhang, H., Yu, Y. (2015). Detecting collective anomalies from multiple spatio-temporal datasets across different domains. In Proceedings of the 23rd SIGSPATIAL international conference on advances in geographic information systems (p. 2). ACM.Google Scholar
  66. Zhu, J., He, W., Yang, H. (2008). Contrastive analysis of correlation dimension of EEG signals between normal and pathological groups. In Automation congress, 2008. WAC 2008. World (pp. 1–4). IEEE.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologyWashington UniversitySt. LouisUSA
  2. 2.Department of Mathematics and StatisticsUniversity of South AlabamaMobileUSA
  3. 3.School of ComputingUniversity of South AlabamaMobileUSA
  4. 4.Oak Ridge National Laboratory (retired)Oak RidgeUSA
  5. 5.Department of NeurologyUniversity of South AlabamaMobileUSA

Personalised recommendations