Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

A configurable two-layer four-bias graphene-based THz absorber

  • 10 Accesses


A novel structure for a THz absorber covering the THz band (0.1–10 THz) is presented. Exploiting nanographene disks and ribbons beside the dual-bias method, three modes of operation are introduced with the graphene gate biasing as the control parameter. The structure includes two layers consisting of graphene patterns on TOPAS dielectric and a thick gold plate at the bottom. The superior performance of the structure mainly relies on the use of feasible geometric patterns and the characteristics of graphene, while an evolutionary genetic algorithm is used to optimize a cost function defined based on four chemical potential values. In comparison with conventional structures, the device proposed herein offers an increased number of gate biases and thereby more degrees of freedom to achieve greater tunability. To model the proposed device, a recently developed circuit model approach is modified to include the dual-bias scheme introduced herein, enabling a very simple calculation of the referred input impedance of the device that lies at the heart of the design procedure. The input impedance required for impedance matching theory is matched with the free space incident medium (120π Ω) to maximize the absorption. Finally, the results from the MATLAB algorithm are verified against finite element method simulations using the CST simulator, confirming the validity and accuracy of the proposed design. According to both the circuit model representation and the full-wave numerical modeling, the presented device absorbs THz waves with an absorption ratio of more than 90% in three operational modes, viz. mode A (0.7–2.2 THz), mode B (5.3–6.6 THz), and mode C (7.4–8.4 THz). This increases its potential for use in numerous applications in the THz band such as sensors, detectors, modulators, and even optical processors.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28


  1. 1.

    Khavasi, A., Rejaei, B.: Analytical modeling of graphene ribbons as optical circuit elements. IEEE J. Quantum Electron. 50, 397–403 (2014)

  2. 2.

    Parizi, S.B., Rejaei, B., Khavasi, A.: Analytical circuit model for periodic arrays of graphene disks. IEEE J. Quantum Electron. 51, 1–7 (2015)

  3. 3.

    Xiong, H., et al.: Equivalent circuit method analysis of graphene-metamaterial (GM) absorber. Plasmonics 13(3), 857–862 (2018)

  4. 4.

    Aghaee, T., Orouji, A.A.: Circuit modeling of ultra‐broadband terahertz absorber based on graphene array periodic disks. Int. J. Numer. Model. Electron. Netw. Devices Fields. (2019).

  5. 5.

    Biabanifard, M., Mohammad, S.A.: Circuit modeling of tunable terahertz graphene absorber. Optik 158, 842–849 (2018)

  6. 6.

    Biabanifard, S., et al.: Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons. Opt. Commun. 427, 418–425 (2018)

  7. 7.

    Sadegh, B.: Ultra-broadband terahertz absorber based on graphene ribbons. Optik 172, 1026–1033 (2018)

  8. 8.

    Biabanifard, M., et al.: Analytical design of tunable multi-band terahertz absorber composed of graphene disks. Optik 182, 433–442 (2019)

  9. 9.

    Biabanifard, M., Mohammad, S.A.: Multi-band circuit model of tunable THz absorber based on graphene sheet and ribbons. AEU Int. J. Electron. Commun. 95, 256–263 (2018)

  10. 10.

    Tabatabaei, F., Mohammad, B., Mohammad, S.A.: Terahertz polarization-insensitive and all-optical tunable filter using the Kerr effect in graphene disks arrays. Optik 180, 526–535 (2019)

  11. 11.

    Arsanjani, A., Mohammad, B., Mohammad, S.A.: A novel analytical method for designing a multi-band, polarization-insensitive and wide angle graphene-based THz absorber. Superlattices Microstruct. 128, 157–169 (2019)

  12. 12.

    Biabanifard, M., Mohammad, S.A.: Ultra-wideband terahertz graphene absorber using a circuit model. Appl. Phys. A 124(12), 826 (2018)

  13. 13.

    Najafi, A., et al.: Reliable design of THz absorbers based on graphene patterns: exploiting genetic algorithm. Optik 203, 163924 (2020)

  14. 14.

    Jozani, K.J., et al.: Multi-bias, graphene-based reconfigurable THz absorber/reflector. Optik 198, 163248 (2019)

  15. 15.

    Islam, M.S., et al.: Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing. Carbon 158, 559–567 (2019)

  16. 16.

    Zanjani, M.S., et al.: A reconfigurable multi-band, multi-bias THz absorber. Optik 191, 22–32 (2019)

  17. 17.

    Biabanifard, M., et al.: Design and comparison of terahertz graphene antenna: ordinary dipole, fractal dipole, spiral, bow-tie and log-periodic. Eng. Technol. 2, 555585-001 (2018)

  18. 18.

    Han, M.Y., Kim, P.: Graphene nanoribbon devices at high bias. Nano Converg. 1(1), 1 (2014)

  19. 19.

    Yang, Ming, Hou, Ying, Kotov, Nicholas A.: Graphene-based multilayers: critical evaluation of materials assembly techniques. Nano Today 7(5), 430–447 (2012)

  20. 20.

    Sang, T., et al.: Approaching total absorption of graphene strips using a c-Si subwavelength periodic membrane. Opt. Commun. 413, 255–260 (2018)

  21. 21.

    Fardoost, A., Fatemeh, G.V., Reza, S.: Design of a multilayer graphene-based ultrawideband terahertz absorber. IEEE Trans. Nanotechnol. 16(1), 68–74 (2017)

  22. 22.

    Guo, J., Leiming, W., Dai, X., Xiang, Y., Fan, D.: Absorption enhancement and total absorption in a graphene-waveguide hybrid structure. AIP Adv. 7(2), 025101 (2017)

  23. 23.

    Wang, X., Jiang, X., You, Q., Guo, J., Dai, X., Xiang, Y.: Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene. Photonics Res. 5(6), 536–542 (2017)

  24. 24.

    Xiang, Y., Dai, X., Guo, J., Zhang, H., Wen, S., Tang, D.: Critical coupling with graphene-based hyperbolic metamaterials. Sci. Rep. 4, 5483 (2014)

  25. 25.

    Zhu, J., Ma, Z., Sun, W., Ding, F., He, Q., Zhou, Li, Ma, Y.: Ultra-broadband terahertz metamaterial absorber. Appl. Phys. Lett. 105(2), 021102 (2014)

  26. 26.

    Runmei, G., Xu, Z., Ding, C., Wu, L., Yao, J.: Graphene metamaterial for multiband and broadband terahertz absorber. Opt. Commun. 356, 400–404 (2015)

  27. 27.

    Guo, Y., Yan, L., Pan, W., Luo, B., Luo, X.: Ultra-broadband terahertz absorbers based on 4 × 4 cascaded metal-dielectric pairs. Plasmonics 9(4), 951–957 (2014)

  28. 28.

    Huang, M., Cheng, Y., Cheng, Z., Chen, H., Mao, X., Gong, R.: Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle. Opt. Commun. 415, 194–201 (2018)

  29. 29.

    Nasari, H., Mohammad, S.A.: Terahertz bistability and multistability in graphene/dielectric Fibonacci multilayer. Appl. Opt. 56(19), 5313–5322 (2017)

  30. 30.

    Xiang, Y., Jun, G., Xiaoyu, D., Shuangchun, W., Dingyuan, T.: Engineered surface Bloch waves in graphene-based hyperbolic metamaterials. Opt. Exp. 22(3), 3054–3062 (2014)

  31. 31.

    Wu, J., Wang, H., Jiang, L., Guo, J., Dai, X., Xiang, Y., Wen, S.: Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range. J. Appl. Phys. 119(20), 203107 (2016)

  32. 32.

    Meng, T., Hu, D., Zhu, Q.: Design of a five-band terahertz perfect metamaterial absorber using two resonators. Opt. Commun. 415, 151–155 (2018)

  33. 33.

    Dong, Y., Liu, P., Dingwang, Y., Li, G., Yang, L.: A tunable ultrabroadband ultrathin terahertz absorber using graphene stacks. IEEE Antennas Wirel. Propag. Lett. 16, 1115–1118 (2017)

  34. 34.

    Pan, W., Xuan, Y., Zhang, J., Zeng, W.: A broadband terahertz metamaterial absorber based on two circular split rings. IEEE J. Quantum Electron. 53(1), 1–6 (2017)

  35. 35.

    Ye, L., Chen, Y., Cai, G., Liu, N., Zhu, J., Song, Z., Liu, Q.H.: Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range. Opt. Exp. 25, 11223–11232 (2017)

Download references

Author information

Correspondence to Sadegh Biabanifard.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soltani, M., Najafi, A., Chaharmahali, I. et al. A configurable two-layer four-bias graphene-based THz absorber. J Comput Electron (2020).

Download citation


  • Reconfigurable absorber
  • Graphene nanoribbons
  • Graphene nanodisks
  • THz
  • Multilayer graphene