Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A graphene-based multiband antipodal Vivaldi nanoantenna for UWB applications

  • 17 Accesses


The design and optimization of an antipodal Vivaldi antenna using graphene material for ultra-wideband applications are described. A frequency-reconfigurable graphene antipodal Vivaldi antenna operating in the terahertz band is designed on a silicon dioxide substrate having thickness h = 3 µm. The antenna is designed and simulated using the finite integration technique in the commercially available Computer Simulation Technology (version 2016) electromagnetic simulation software. Due to its flexibility and hexagonal nature, the graphene-based THz antenna demonstrates multiband resonances. The results for the graphene-based antipodal Vivaldi antenna parameters, such as the return loss, bandwidth, voltage standing wave ratio (VSWR), three-dimensional (3D) and two-dimensional (2D) gain and directivity with co- and cross-polarization, and side-lobe levels, are analyzed. The designed graphene antenna exhibits four resonance bands in the terahertz range, covering the frequency range from 1 to 5 THz. The peak gain can reach 6.48 dBi with directivity of 8.3 dBi at the resonant frequency of 2.31 THz in the operating band from 1.44 to 2.4 THz.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Akyildiz, I.F., Jornet, J.M., Han, C.: Terahertz band: next frontier for wireless communications. Phys. Commun. 12, 16–32 (2014)

  2. 2.

    Younssi, M., Jaoujal, A., Yaccoub, M.D., El Moussaoui, A., Aknin, N.: Study of a microstrip antenna with and without superstrate for terahertz frequency. Int. J. Innov. Appl. Stud. 2(4), 369–371 (2013)

  3. 3.

    Kashyap, S.S., Dwivedi, V.: Electromagnetically coupled microstrip patch antennas for high frequency sensing applications. In: 2015 7th International Conference on Computational Intelligence, Communication Systems and Networks (pp. 45–50). IEEE (2015)

  4. 4.

    Sadat, S., Fardis, M., Geran, F., Dadashzadeh, G., Hojjat, N., Roshandel, M.: A compact microstrip square-ring slot antenna for UWB applications. In: 2006 IEEE Antennas and Propagation Society International Symposium (pp. 4629–4632). IEEE, 2006

  5. 5.

    Hale, P.J., Madeo, J., Chin, C., Dhillon, S.S., Mangeney, J., Tignon, J., Dani, K.M.: 20 THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas. Opt. Express 22(21), 26358–26364 (2014)

  6. 6.

    Bala, R., Marwaha, A., Marwaha, S.: Graphene antenna design for terahertz regime with exact formulation of surface conductivity. J. Nanoelectron. Optoelectron. 11(4), 459–464 (2016)

  7. 7.

    Bala, R., Marwaha, A., Marwaha, S.: Mathematical formulation of surface conductivity for graphene material. J. Eng. Sci. Technol. 12(6), 1677–1684 (2017)

  8. 8.

    Bala, R., Marwaha, A.: Analysis of graphene based triangular nano patch antenna using photonic crystal as substrate for wireless applications. In: 2015 2nd International Conference on Recent Advances in Engineering and Computational Sciences (RAECS) (pp. 1–7). IEEE (2015)

  9. 9.

    Bala, R., Marwaha, A.: Development of computational model for tunable characteristics of graphene based triangular patch antenna in THz regime. J. Comput. Electron. 15(1), 222–227 (2016)

  10. 10.

    Bala, R., Marwaha, A.: Characterization of graphene for performance enhancement of patch antenna in THz region. Opt. Int. J. Light Electron Opt. 127(4), 2089–2093 (2016)

  11. 11.

    Bala, R., Marwaha, A., Marwaha, S.: Performance enhancement of patch antenna in terahertz region using graphene. Curr. Nanosci. 12(2), 237–243 (2016)

  12. 12.

    Bala, R., Marwaha, A., Marwaha, S.: Comparative analysis of zigzag and armchair structures for graphene patch antenna in THz band. J. Mater. Sci. Mater. Electron. 27(5), 5064–5069 (2016)

  13. 13.

    Bala, R., Marwaha, A.: Investigation of graphene based miniaturized terahertz antenna for novel substrate materials. Eng. Sci. Technol. Int. J. 19(1), 531–537 (2016)

  14. 14.

    Bala, R., Singh, R., Marwaha, A., Marwaha, S.: Wearable graphene based curved patch antenna for medical telemetry applications. Appl. Comput. Electromagn. Soc. J. 31(5), 543–550 (2016)

  15. 15.

    Varshney, G., Verma, A., Pandey, V.S., Yaduvanshi, R.S., Bala, R.: A proximity coupled wideband graphene antenna with the generation of higher order TM modes for THz applications. Opt. Mater. 85, 456–463 (2018)

  16. 16.

    Bala, R., Marwaha, A.: Performance analysis of graphene based nano patch antenna for various substrate materials in THz regime. In: International Conference on Electrical and Electronics Engineering (2015)

  17. 17.

    Abadal, S., Hosseininejad, S.E., Cabellos-Aparicio, A., Alarcón, E.: Graphene-based terahertz antennas for area-constrained applications. In: 2017 40th International Conference on Telecommunications and Signal Processing (TSP) (pp. 817–820). IEEE (2017)

  18. 18.

    Mencarelli, D., Dragoman, M., Pierantoni, L., Rozzi, T., Coccetti, F.: Design of a coplanar graphene-based nano-patch antenna for microwave application. In: 2013 IEEE MTT-S International Microwave Symposium Digest (MTT) (pp. 1–4). IEEE (2013)

  19. 19.

    Azizi, M.K., Ksiksi, M.A., Ajlani, H., Gharsallah, A.: Terahertz graphene-based reconfigurable patch antenna. Prog. Electromagn. Res. 71, 69–76 (2017)

  20. 20.

    Bandurin, D.A., Svintsov, D., Gayduchenko, I., Xu, S.G., Principi, A., Moskotin, M., Tretyakov, I., Yagodkin, D., Zhukov, S., Taniguchi, T., Watanabe, K.: Resonant terahertz detection using graphene plasmons. Nat. Commun. 9(1), 5392 (2018)

  21. 21.

    Mencarelli, D., Bellucci, S., Sindona, A., Pierantoni, L.: Spatial dispersion effects upon local excitation of extrinsic plasmons in a graphene micro-disk. J. Phys. D Appl. Phys. 48(46), 465104 (2015)

  22. 22.

    Pierantoni, L., Bozzi, M., Moro, R., Mencarelli, D., Bellucci, S.: On the use of electrostatically doped graphene: Analysis of microwave attenuators. In: 2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO) (pp. 1–4). IEEE (2014)

  23. 23.

    Vincenzi, G., Deligeorgis, G., Coccetti, F., Dragoman, M., Pierantoni, L., Mencarelli, D., Plana, R.: Extending ballistic graphene FET lumped element models to diffusive devices. Solid State Electron. 76, 8–12 (2012)

  24. 24.

    Sarkar, C.: Some parametric studies on Vivaldi antenna. Int. J. u-and e-Serv. Sci. Technol. 7(4), 323–328 (2014)

  25. 25.

    Jolani, F., Dadashzadeh, G.R., Naser-Moghadasi, M., Dadgarpour, A.M.: Design and optimization of compact balanced antipodal Vivaldi antenna. Prog. Electromagn. Res. 9, 183–192 (2009)

  26. 26.

    Inum, R., Rana, M.M., Shushama, K.N.: Development of graphene based tapered slot antennas for ultra-wideband applications. Prog. Electromagn. Res. 79, 241–255 (2017)

  27. 27.

    Bansal, G., Marwaha, A., Singh, A., Bala, R., Marwaha, S.: Graphene based wideband arc truncated terahertz antenna for wireless communication. Curr. Nanosci. 14(4), 290–297 (2018)

  28. 28.

    Bansal, G., Marwaha, A., Singh, A., Bala, R., Marwaha, S.: A triband slotted Bow-tie wideband THz antenna design using graphene for wireless applications. Opt. Int. J. Light Electron Opt. 185(2019), 1163–1171 (2019)

  29. 29.

    Balanis, C.A.: Antenna Theory Analysis and Design, 2nd edn. Wiley, New York (1997)

Download references


This work is supported by IKG PTU Jalandhar and DST FIST-2018 project (reference no. SR/ET-I/2018/157). The authors are grateful to their coworkers Prof. (Dr.) Sanjay Marwaha and Dr. Rajni Bala, who contributed greatly to the completion of this work.

Author information

Correspondence to Gaurav Bansal.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest, financial or otherwise.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bansal, G., Marwaha, A. & Singh, A. A graphene-based multiband antipodal Vivaldi nanoantenna for UWB applications. J Comput Electron (2020).

Download citation


  • Graphene
  • Antipodal Vivaldi antenna
  • Terahertz
  • CST
  • FIT
  • Ultra-wideband