Advertisement

Studying temperature effects on electronic and optical properties of cubic CH3NH3SnI3 perovskite

  • 16 Accesses

Abstract

CH3NH3SnI3 is a promising lead-free perovskite structure for the absorber layer in solar cells. In this work, for the first time, we simulated the effect of temperature change on the electronic and optical properties of CH3NH3SnI3 through a combination of the molecular dynamics and density functional theory methods. We report the results of our studies on the electronic and optical properties of the normal (300 K) and expanded (325 K)/contracted (275 K) CH3NH3SnI3 structures, and compare the obtained results with each other. Our electronic calculations showed that the direct band gap is opened up to 1.02 eV, 1.25 eV, and 0.88 eV for the normal and thermally expanded/contracted structures, respectively. The calculated density of states for all the structures shows that the Sn and I ions play an important role in the electronic properties of the studied samples, and methyl ammonium (CH3NH3) is a structural framework for this perovskite. The absorption, transparency, and maximum reflectivity to the considered energies indicate the potential of CH3NH3SnI3 for optoelectronic applications. The obtained results also show that the CH3NH3SnI3 perovskite, as an absorber layer in solar cells, exhibits a better optical performance at 325 K than at 275 K and 300 K.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Tong, P., Sun, Y.P., Zhao, B.C., Zhu, X.B., Song, W.H.: Influence of carbon concentration on structural, magnetic and electrical transport properties for antiperovskite compounds AlCxMn3. Solid State Commun. 138(2), 64–67 (2006). https://doi.org/10.1016/j.ssc.2006.02.009

  2. 2.

    Kamishima, K., Goto, T., Nakagawa, H., Miura, N., Ohashi, M., Mori, N., et al.: Giant magnetoresistance in the intermetallic compound Mn3GaC. Phys. Rev. B 63(2), 024426 (2000). https://doi.org/10.1103/physrevb.63.024426

  3. 3.

    Kim, W.S., Chi, E.O., Kim, J.C., Hur, N.H., Lee, K.W., Choi, Y.N.: Cracks induced by magnetic ordering in the antiperovskite ZnNMn3. Phys. Rev. B 68(17), 172402 (2003). https://doi.org/10.1103/physrevb.68.172402

  4. 4.

    Chi, E.O., Kim, W.S., Hur, N.H.: Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3. Solid State Commun. 120(7–8), 307–310 (2001). https://doi.org/10.1016/s0038-1098(01)00395-7

  5. 5.

    Singer, P., Imai, T., He, T., Hayward, M., Cava, R.: C13 NMR investigation of the superconductor MgCNi3 up to 800 K. Phys. Rev. Lett. 87(25), 257601 (2001). https://doi.org/10.1103/physrevlett.87.257601

  6. 6.

    Okoye, C.M.I.: First-principles optical calculations of AsNMg3 and SbNMg3. Mater. Sci. Eng. B 130(1–3), 101–107 (2006). https://doi.org/10.1016/j.mseb.2006.02.066

  7. 7.

    Chi, E., Kim, W., Hur, N., Jung, D.: New Mg-based antiperovskites PnNMg3 (Pn = As, Sb). Solid State Commun. 121(6–7), 309–312 (2002). https://doi.org/10.1016/s0038-1098(02)00011-x

  8. 8.

    Hamberg, I., Granqvist, C.G.: Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60(11), R123–R160 (1986). https://doi.org/10.1063/1.337534

  9. 9.

    Chung, I., Lee, B., He, J., Chang, R.P.H., Kanatzidis, M.G.: All-solid-state dye-sensitized solar cells with high efficiency. Nature 485(7399), 486–489 (2012). https://doi.org/10.1038/nature11067

  10. 10.

    Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013). https://doi.org/10.1038/nature12509

  11. 11.

    Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal Halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r

  12. 12.

    Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). https://doi.org/10.1038/nature12340

  13. 13.

    Alidaei, M., Izadifard, M., Ghazi, M.E., Ahmadi, V.: Efficiency enhancement of perovskite solar cells using structural and morphological improvement of CH3NH3PbI3 absorber layers. Mater. Res. Express 5(1), 016412 (2018). https://doi.org/10.1088/2053-1591/aaa616

  14. 14.

    Alidaei, M., Izadifard, M., Ghazi, M.E., Roghabadi, F.A., Ahmadi, V.: Interfacial defect passivation in CH3NH3PbI3 perovskite solar cells using modifying of hole transport layer. J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01009-5

  15. 15.

    Faghihnasiri, M., Izadifard, M., Ghazi, M.E.: DFT study of mechanical properties and stability of cubic methylammonium lead halide perovskites (CH3NH3PbX3, X = I, Br, Cl). J Phys Chem C 121(48), 27059–27070 (2017). https://doi.org/10.1021/acs.jpcc.7b07129

  16. 16.

    Faghihnasiri, M., Izadifard, M., Ghazi, M.E.: DFT study of electronic structure and optical properties of layered two-dimensional CH3NH3PbX3 (X = Cl, Br, I). Energy Sour. Part A Recovery Util. Environ. Eff. (2019). https://doi.org/10.1080/15567036.2019.1568645

  17. 17.

    Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P.H., Kanatzidis, M.G.: Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8(6), 489–494 (2014). https://doi.org/10.1038/nphoton.2014.82

  18. 18.

    Zhang, H., Qiao, X., Shen, Y., Moehl, T., Zakeeruddin, S.M., Grätzel, M., Wang, M.: Photovoltaic behaviour of lead methylammonium triiodide perovskite solar cells down to 80 K. J. Mater. Chem. A 3(22), 11762–11767 (2015). https://doi.org/10.1039/c5ta02206a

  19. 19.

    Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019–9038 (2013). https://doi.org/10.1021/ic401215x

  20. 20.

    Wang, Y., Yang, J., Ye, C., Fang, X., Zhang, L.: Thermal expansion of Cu nanowire arrays. Nanotechnology 15(11), 1437–1440 (2004). https://doi.org/10.1088/0957-4484/15/11/009

  21. 21.

    Akbarzadeh, H., Abroshan, H., Taherkhani, F., Parsafar, G.A.: Calculation of thermodynamic properties of Ni nanoclusters via selected equations of state based on molecular dynamics simulations. Solid State Commun. 151(14–15), 965–970 (2011). https://doi.org/10.1016/j.ssc.2011.05.011

  22. 22.

    Feng, Y., Zhu, J., Tang, D.-W.: Molecular dynamics study on heat transport from single-walled carbon nanotubes to Si substrate. Phys. Lett. A 379(4), 382–388 (2015). https://doi.org/10.1016/j.physleta.2014.11.045

  23. 23.

    Liu, Z.-J., Sun, X.-W., Tan, X.-M., Guo, Y.-D., Yang, X.-D.: Structural and thermodynamic properties of MgSiO3 perovskite under high pressure and high temperature. Solid State Commun. 144(5–6), 264–268 (2007). https://doi.org/10.1016/j.ssc.2007.08.001

  24. 24.

    Volz, S., Chen, G.: Lattice dynamic simulation of silicon thermal conductivity. Phys. B 263–264, 709–712 (1999). https://doi.org/10.1016/s0921-4526(98)01453-7

  25. 25.

    Pishkenari, H.N., Afsharmanesh, B., Akbari, E.: Surface elasticity and size effect on the vibrational behavior of silicon nanoresonators. Curr. Appl. Phys. 15(11), 1389–1396 (2015). https://doi.org/10.1016/j.cap.2015.08.002

  26. 26.

    Pishkenari, H.N., Afsharmanesh, B., Tajaddodianfar, F.: Continuum models calibrated with atomistic simulations for the transverse vibrations of silicon nanowires. Int. J. Eng. Sci. 100, 8–24 (2016). https://doi.org/10.1016/j.ijengsci.2015.11.005

  27. 27.

    Jing, Y., Zhang, C., Liu, Y., Guo, L., Meng, Q.: Mechanical properties of kinked silicon nanowires. Phys. B 462, 59–63 (2015). https://doi.org/10.1016/j.physb.2015.01.018

  28. 28.

    Zhang, A., Gu, X., Liu, F., Xie, Y., Ye, X., Shi, W.: A study of the size-dependent elastic properties of silicon carbide nanotubes: first-principles calculations. Phys. Lett. A 376(19), 1631–1635 (2012). https://doi.org/10.1016/j.physleta.2012.03.035

  29. 29.

    Wang, C.-H., Fang, T.-H., Sun, W.-L.: Mechanical properties of pillared-graphene nanostructures using molecular dynamics simulations. J. Phys. D Appl. Phys. 47(40), 405302 (2014). https://doi.org/10.1088/0022-3727/47/40/405302

  30. 30.

    Plimpton, S.: Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 117(1), 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

  31. 31.

    Plimpton, S.J., Thompson, A.P.: Computational aspects of many-body potentials. MRS Bull. 37(05), 513–521 (2012). https://doi.org/10.1557/mrs.2012.96

  32. 32.

    Plimpton, S.J., Pollock, R., Stevens, M.: Particle-Mesh Ewald and rRESPA for Parallel Molecular Dynamics Simulations. In: PPSC (1997)

  33. 33.

    Brown, W.M., Wang, P., Plimpton, S.J., Tharrington, A.N.: Implementing molecular dynamics on hybrid high performance computers—short range forces. Comput. Phys. Commun. 182(4), 898–911 (2011). https://doi.org/10.1016/j.cpc.2010.12.021

  34. 34.

    Nordlund, K., Dudarev, S.L.: Interatomic potentials for simulating radiation damage effects in metals. C R Phys. 9(3–4), 343–352 (2008). https://doi.org/10.1016/j.crhy.2007.10.012

  35. 35.

    Mayo, S.L., Olafson, B.D., Goddard, W.A.: DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94(26), 8897–8909 (1990). https://doi.org/10.1021/j100389a010

  36. 36.

    Gonze, X., Beuken, J.-M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G.-M., et al.: First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25(3), 478–492 (2002). https://doi.org/10.1016/s0927-0256(02)00325-7

  37. 37.

    Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). https://doi.org/10.1103/physrevb.13.5188

  38. 38.

    Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953

  39. 39.

    Ernzerhof, M., Scuseria, G.E.: Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110(11), 5029–5036 (1999). https://doi.org/10.1063/1.478401

  40. 40.

    Fletcher, Roger: Practical methods of optimization, 2nd edn. Wiley, New York (1987). ISBN 978-0-471-91547-8

  41. 41.

    Grundmann, M.: The physics of semiconductors. Springer-Verlag, Berlin, Heidelberg (2010). https://doi.org/10.1007/9783-642-13884-3

  42. 42.

    Nejat Pishkenari, H., Mohagheghian, E., Rasouli, A.: Molecular dynamics study of the thermal expansion coefficient of silicon. Phys. Lett. A 380(48), 4039–4043 (2016). https://doi.org/10.1016/j.physleta.2016.08.027

  43. 43.

    Matsui, M.: Molecular dynamics study of MgSiO3 perovskite. Phys. Chem. Miner. 16(3), 234–238 (1988). https://doi.org/10.1007/bf00220690

  44. 44.

    Setyawan, W., Curtarolo, S.: High-throughput electronic band structure calculations: challenges and tools. Comput. Mater. Sci. 49(2), 299–312 (2010). https://doi.org/10.1016/j.commatsci.2010.05.010

  45. 45.

    Umari, P., Mosconi, E., De Angelis, F.: Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4(1), 5 (2014). https://doi.org/10.1038/srep04467

  46. 46.

    Frost, J.M., Butler, K.T., Brivio, F., Hendon, C.H., Schilfgaarde, M.V., Walsh, A.: Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014)

  47. 47.

    Huang, L., Lambrecht, W.R.L.: Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3. Phys. Rev. B 88, 165203 (2013)

Download references

Author information

Correspondence to M. E. Ghazi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sabetvand, R., Ghazi, M.E. & Izadifard, M. Studying temperature effects on electronic and optical properties of cubic CH3NH3SnI3 perovskite. J Comput Electron (2020). https://doi.org/10.1007/s10825-020-01443-3

Download citation

Keywords

  • Cubic CH3NH3SnI3
  • Electronic properties
  • Optical properties
  • Thermal expansion/contraction
  • Density functional theory
  • Molecular dynamics