Studying temperature effects on electronic and optical properties of cubic CH3NH3SnI3 perovskite

  • 16 Accesses


CH3NH3SnI3 is a promising lead-free perovskite structure for the absorber layer in solar cells. In this work, for the first time, we simulated the effect of temperature change on the electronic and optical properties of CH3NH3SnI3 through a combination of the molecular dynamics and density functional theory methods. We report the results of our studies on the electronic and optical properties of the normal (300 K) and expanded (325 K)/contracted (275 K) CH3NH3SnI3 structures, and compare the obtained results with each other. Our electronic calculations showed that the direct band gap is opened up to 1.02 eV, 1.25 eV, and 0.88 eV for the normal and thermally expanded/contracted structures, respectively. The calculated density of states for all the structures shows that the Sn and I ions play an important role in the electronic properties of the studied samples, and methyl ammonium (CH3NH3) is a structural framework for this perovskite. The absorption, transparency, and maximum reflectivity to the considered energies indicate the potential of CH3NH3SnI3 for optoelectronic applications. The obtained results also show that the CH3NH3SnI3 perovskite, as an absorber layer in solar cells, exhibits a better optical performance at 325 K than at 275 K and 300 K.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Tong, P., Sun, Y.P., Zhao, B.C., Zhu, X.B., Song, W.H.: Influence of carbon concentration on structural, magnetic and electrical transport properties for antiperovskite compounds AlCxMn3. Solid State Commun. 138(2), 64–67 (2006).

  2. 2.

    Kamishima, K., Goto, T., Nakagawa, H., Miura, N., Ohashi, M., Mori, N., et al.: Giant magnetoresistance in the intermetallic compound Mn3GaC. Phys. Rev. B 63(2), 024426 (2000).

  3. 3.

    Kim, W.S., Chi, E.O., Kim, J.C., Hur, N.H., Lee, K.W., Choi, Y.N.: Cracks induced by magnetic ordering in the antiperovskite ZnNMn3. Phys. Rev. B 68(17), 172402 (2003).

  4. 4.

    Chi, E.O., Kim, W.S., Hur, N.H.: Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3. Solid State Commun. 120(7–8), 307–310 (2001).

  5. 5.

    Singer, P., Imai, T., He, T., Hayward, M., Cava, R.: C13 NMR investigation of the superconductor MgCNi3 up to 800 K. Phys. Rev. Lett. 87(25), 257601 (2001).

  6. 6.

    Okoye, C.M.I.: First-principles optical calculations of AsNMg3 and SbNMg3. Mater. Sci. Eng. B 130(1–3), 101–107 (2006).

  7. 7.

    Chi, E., Kim, W., Hur, N., Jung, D.: New Mg-based antiperovskites PnNMg3 (Pn = As, Sb). Solid State Commun. 121(6–7), 309–312 (2002).

  8. 8.

    Hamberg, I., Granqvist, C.G.: Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60(11), R123–R160 (1986).

  9. 9.

    Chung, I., Lee, B., He, J., Chang, R.P.H., Kanatzidis, M.G.: All-solid-state dye-sensitized solar cells with high efficiency. Nature 485(7399), 486–489 (2012).

  10. 10.

    Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013).

  11. 11.

    Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal Halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009).

  12. 12.

    Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013).

  13. 13.

    Alidaei, M., Izadifard, M., Ghazi, M.E., Ahmadi, V.: Efficiency enhancement of perovskite solar cells using structural and morphological improvement of CH3NH3PbI3 absorber layers. Mater. Res. Express 5(1), 016412 (2018).

  14. 14.

    Alidaei, M., Izadifard, M., Ghazi, M.E., Roghabadi, F.A., Ahmadi, V.: Interfacial defect passivation in CH3NH3PbI3 perovskite solar cells using modifying of hole transport layer. J. Mater. Sci. Mater. Electron. (2019).

  15. 15.

    Faghihnasiri, M., Izadifard, M., Ghazi, M.E.: DFT study of mechanical properties and stability of cubic methylammonium lead halide perovskites (CH3NH3PbX3, X = I, Br, Cl). J Phys Chem C 121(48), 27059–27070 (2017).

  16. 16.

    Faghihnasiri, M., Izadifard, M., Ghazi, M.E.: DFT study of electronic structure and optical properties of layered two-dimensional CH3NH3PbX3 (X = Cl, Br, I). Energy Sour. Part A Recovery Util. Environ. Eff. (2019).

  17. 17.

    Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P.H., Kanatzidis, M.G.: Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8(6), 489–494 (2014).

  18. 18.

    Zhang, H., Qiao, X., Shen, Y., Moehl, T., Zakeeruddin, S.M., Grätzel, M., Wang, M.: Photovoltaic behaviour of lead methylammonium triiodide perovskite solar cells down to 80 K. J. Mater. Chem. A 3(22), 11762–11767 (2015).

  19. 19.

    Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019–9038 (2013).

  20. 20.

    Wang, Y., Yang, J., Ye, C., Fang, X., Zhang, L.: Thermal expansion of Cu nanowire arrays. Nanotechnology 15(11), 1437–1440 (2004).

  21. 21.

    Akbarzadeh, H., Abroshan, H., Taherkhani, F., Parsafar, G.A.: Calculation of thermodynamic properties of Ni nanoclusters via selected equations of state based on molecular dynamics simulations. Solid State Commun. 151(14–15), 965–970 (2011).

  22. 22.

    Feng, Y., Zhu, J., Tang, D.-W.: Molecular dynamics study on heat transport from single-walled carbon nanotubes to Si substrate. Phys. Lett. A 379(4), 382–388 (2015).

  23. 23.

    Liu, Z.-J., Sun, X.-W., Tan, X.-M., Guo, Y.-D., Yang, X.-D.: Structural and thermodynamic properties of MgSiO3 perovskite under high pressure and high temperature. Solid State Commun. 144(5–6), 264–268 (2007).

  24. 24.

    Volz, S., Chen, G.: Lattice dynamic simulation of silicon thermal conductivity. Phys. B 263–264, 709–712 (1999).

  25. 25.

    Pishkenari, H.N., Afsharmanesh, B., Akbari, E.: Surface elasticity and size effect on the vibrational behavior of silicon nanoresonators. Curr. Appl. Phys. 15(11), 1389–1396 (2015).

  26. 26.

    Pishkenari, H.N., Afsharmanesh, B., Tajaddodianfar, F.: Continuum models calibrated with atomistic simulations for the transverse vibrations of silicon nanowires. Int. J. Eng. Sci. 100, 8–24 (2016).

  27. 27.

    Jing, Y., Zhang, C., Liu, Y., Guo, L., Meng, Q.: Mechanical properties of kinked silicon nanowires. Phys. B 462, 59–63 (2015).

  28. 28.

    Zhang, A., Gu, X., Liu, F., Xie, Y., Ye, X., Shi, W.: A study of the size-dependent elastic properties of silicon carbide nanotubes: first-principles calculations. Phys. Lett. A 376(19), 1631–1635 (2012).

  29. 29.

    Wang, C.-H., Fang, T.-H., Sun, W.-L.: Mechanical properties of pillared-graphene nanostructures using molecular dynamics simulations. J. Phys. D Appl. Phys. 47(40), 405302 (2014).

  30. 30.

    Plimpton, S.: Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 117(1), 1–19 (1995).

  31. 31.

    Plimpton, S.J., Thompson, A.P.: Computational aspects of many-body potentials. MRS Bull. 37(05), 513–521 (2012).

  32. 32.

    Plimpton, S.J., Pollock, R., Stevens, M.: Particle-Mesh Ewald and rRESPA for Parallel Molecular Dynamics Simulations. In: PPSC (1997)

  33. 33.

    Brown, W.M., Wang, P., Plimpton, S.J., Tharrington, A.N.: Implementing molecular dynamics on hybrid high performance computers—short range forces. Comput. Phys. Commun. 182(4), 898–911 (2011).

  34. 34.

    Nordlund, K., Dudarev, S.L.: Interatomic potentials for simulating radiation damage effects in metals. C R Phys. 9(3–4), 343–352 (2008).

  35. 35.

    Mayo, S.L., Olafson, B.D., Goddard, W.A.: DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94(26), 8897–8909 (1990).

  36. 36.

    Gonze, X., Beuken, J.-M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G.-M., et al.: First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25(3), 478–492 (2002).

  37. 37.

    Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976).

  38. 38.

    Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994).

  39. 39.

    Ernzerhof, M., Scuseria, G.E.: Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110(11), 5029–5036 (1999).

  40. 40.

    Fletcher, Roger: Practical methods of optimization, 2nd edn. Wiley, New York (1987). ISBN 978-0-471-91547-8

  41. 41.

    Grundmann, M.: The physics of semiconductors. Springer-Verlag, Berlin, Heidelberg (2010).

  42. 42.

    Nejat Pishkenari, H., Mohagheghian, E., Rasouli, A.: Molecular dynamics study of the thermal expansion coefficient of silicon. Phys. Lett. A 380(48), 4039–4043 (2016).

  43. 43.

    Matsui, M.: Molecular dynamics study of MgSiO3 perovskite. Phys. Chem. Miner. 16(3), 234–238 (1988).

  44. 44.

    Setyawan, W., Curtarolo, S.: High-throughput electronic band structure calculations: challenges and tools. Comput. Mater. Sci. 49(2), 299–312 (2010).

  45. 45.

    Umari, P., Mosconi, E., De Angelis, F.: Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4(1), 5 (2014).

  46. 46.

    Frost, J.M., Butler, K.T., Brivio, F., Hendon, C.H., Schilfgaarde, M.V., Walsh, A.: Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014)

  47. 47.

    Huang, L., Lambrecht, W.R.L.: Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3. Phys. Rev. B 88, 165203 (2013)

Download references

Author information

Correspondence to M. E. Ghazi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sabetvand, R., Ghazi, M.E. & Izadifard, M. Studying temperature effects on electronic and optical properties of cubic CH3NH3SnI3 perovskite. J Comput Electron (2020).

Download citation


  • Cubic CH3NH3SnI3
  • Electronic properties
  • Optical properties
  • Thermal expansion/contraction
  • Density functional theory
  • Molecular dynamics