Tight-binding description of graphene–BCN–graphene layered semiconductors

  • 31 Accesses


Based on density functional calculations, tight-binding models are proposed for few layers of three BCN allotropes sandwiched between two layers of graphene. The results pave the road toward investigation of the performance of novel nanoelectronic devices such as vertical tunneling field effect transistors and nanoscale sensors operating on the basis of quantum tunneling through these layered materials-based systems.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Areshkin, D.A., White, C.T.: Building blocks for integrated graphene circuits. Nano Lett. 7(11), 3253–3259 (2007)

  2. 2.

    Lee, S., Lee, K., Liu, C.H., Kulkarni, G.S., Zhong, Z.: Flexible and transparent all-graphene circuits for quaternary digital modulations. Nat. Commun. 3, 1018 (2012)

  3. 3.

    Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5(7), 487 (2010)

  4. 4.

    Yang, L., Park, C.H., Son, Y.W., Cohen, M.L., Louie, S.G.: Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99(18), 186801 (2007)

  5. 5.

    Ni, Z.H., Yu, T., Lu, Y.H., Wang, Y.Y., Feng, Y.P., Shen, Z.X.: Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2(11), 2301–2305 (2008)

  6. 6.

    Castro, E.V., Novoselov, K.S., Morozov, S.V., Peres, N.M.R., Dos Santos, J.L., Nilsson, J., Guinea, F., Geim, A.K., Neto, A.C.: Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99(21), 216802 (2007)

  7. 7.

    Shinde, P.P., Kumar, V.: Direct band gap opening in graphene by BN doping: Ab initio calculations. Phys. Rev. B 84(12), 125401 (2011)

  8. 8.

    Jung, J., Qiao, Z., Niu, Q., MacDonald, A.H.: Transport properties of graphene nanoroads in boron nitride sheets. Nano Lett. 12(6), 2936–2940 (2012)

  9. 9.

    Fiori, G., Betti, A., Bruzzone, S., Iannaccone, G.: Lateral graphene–hBCN heterostructures as a platform for fully two-dimensional transistors. ACS Nano 6(3), 2642–2648 (2012)

  10. 10.

    Saptarshi, D., Prakash, A., Salazar, R., Appenzeller, J.: Toward low-power electronics: tunneling phenomena in transition metal dichalcogenides. ACS Nano 8(2), 1681–1689 (2014)

  11. 11.

    Britnell, L., Gorbachev, R.V., Jalil, R., Belle, B.D., Schedin, F., Mishchenko, A., Georgiou, T., et al.: Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335(6071), 947–950 (2012)

  12. 12.

    Dean, C.R., Andrea, F.Y., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., et al.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722 (2010)

  13. 13.

    Giannazzo, F., Greco, G., Roccaforte, F., Sonde, S.: Vertical transistors based on 2D materials: status and prospects. Crystals 8(2), 70 (2018)

  14. 14.

    Ci, L., Song, L., Jin, C., Jariwala, D., Wu, D., Li, Y., Srivastava, A., Wang, Z.F., Storr, K., Balicas, K., Ajayan, P.M., Liu, F.: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010)

  15. 15.

    Beniwal, S., Hooper, J., Miller, D.P., Costa, P.S., Chen, G., Liu, S.Y., Dowben, P.A., Sykes, E.C., Zurek, E., Enders, A.: Graphene-like boron–carbon–nitrogen monolayers. ACS Nano 11(3), 2486–2493 (2017)

  16. 16.

    Zhang, J., Zhang, Y., Huang, S., Lin, W., Chen, W.K.: BC2N/graphene heterostructure as a promising anode material for rechargeable Li-ion batteries by density functional calculations. J. Phys. Chem. C 123, 30809–30818 (2019)

  17. 17.

    Shao, Y., Wang, Q., Hu, L., Pan, H., Shi, X.: BC2N monolayers as promising anchoring materials for lithium–sulfur batteries: first-principles insights. Carbon 1(149), 530–537 (2019)

  18. 18.

    Ghobadi, N., Pourfath, M.: Vertical tunneling graphene heterostructure-based transistor for pressure sensing. IEEE Electron Device Lett. 36(3), 280–282 (2015)

  19. 19.

    Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014)

  20. 20.

    Le Lay, G.: 2D materials: silicene transistors. Nat. Nanotechnol. 10(3), 202 (2015)

  21. 21.

    Hancock, Y., Uppstu, A., Saloriutta, K., Harju, A., Puska, M.J.: Generalized tight-binding transport model for graphene nanoribbon-based systems. Phys. Rev. B 81(24), 245402 (2010)

  22. 22.

    Sławińska, J., Zasada, I., Klusek, Z.: Energy gap tuning in graphene on hexagonal boron nitride bilayer system. Phys. Rev. B 81(15), 155433 (2010)

  23. 23.

    Jung, J., MacDonald, A.H.: Tight-binding model for graphene π-bands from maximally localized Wannier functions. Phys. Rev. B 87(19), 195450 (2013)

  24. 24.

    Sanaeepur, M., Goharrizi, A.Y., Sharifi, M.J.: Performance analysis of graphene nanoribbon field effect transistors in the presence of surface roughness. IEEE Trans. Electron Devices 61(4), 1193–1198 (2013)

  25. 25.

    Sanaeepur, M., Goharrizi, A.Y., Sharifi, M.J.: Numerical investigation of the effect of substrate surface roughness on the performance of zigzag graphene nanoribbon field effect transistors symmetrically doped with BN. Beilstein J. Nanotechnol. 5(1), 1569–1574 (2014)

  26. 26.

    Sanaeepur, M.: Crosstalk delay and stability analysis of MLGNR interconnects on rough surface dielectrics. IEEE Trans. Nanotechnol. 18, 1181–1187 (2019)

  27. 27.

    Goharrizi, A.Y., Sanaeepur, M., Sharifi, M.J.: Improving performance of armchair graphene nanoribbon field effect transistors via boron nitride doping. Superlattice Microstruct. 85, 522–5290 (2015)

  28. 28.

    Horri, A., Faez, R., Pourfath, M., Darvish, G.: Modeling of a vertical tunneling transistor based on graphene–MoS2 heterostructure. IEEE Trans. Electron Devices 64(8), 3459–3465 (2017)

  29. 29.

    Sanaeepour, M., Abedi, A., Sharifi, M.J.: Performance analysis of nanoscale single layer graphene pressure sensors. IEEE Trans. Electron Devices 64(3), 1300–1304 (2017)

  30. 30.

    Horri, A., Faez, R., Pourfath, M., Darvish, G.: A computational study of vertical tunneling transistors based on graphene-WS2 heterostructure. J. Appl. Phys. 121(21), 214503 (2017)

  31. 31.

    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21(39), 395502 (2009)

  32. 32.

    Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23(10), 5048 (1981)

  33. 33.

    Kohn, W.: Electronic structure of matter–wave functions and density functionals. Rev. Mod. Phys. 71(5), 1253–1266 (1999)

Download references

Author information

Correspondence to Majid Sanaeepur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, M., Horri, A., Sanaeepur, M. et al. Tight-binding description of graphene–BCN–graphene layered semiconductors. J Comput Electron (2020).

Download citation


  • BCN
  • Graphene
  • Boron nitride
  • Tight-binding
  • DFT