Advertisement

The effects of close packing and electric fields on the optical properties of three-dimensionally stacked quantum dots

  • M. SolaimaniEmail author
  • Davood Haji Taghi Tehrani
Article
  • 36 Downloads

Abstract

An algorithm to evaluate the position of spherical quantum dots in a closely packed state inside a cube is presented and its accuracy confirmed numerically. A finite-difference method to solve the corresponding three-dimensional Schrödinger equation in the presence of an external electric field is then described. The Arnoldi factorization method is used to diagonalize the resulting huge sparse matrix. The results reveal that both the intensity and direction of the electric field can significantly change the height of the absorption peak and are thus both important. Two different semiconducting structures, viz. GaAs/AlxGa1−xAs and InSb/GaSb, are investigated, revealing that the latter exhibits a more tunable absorption coefficient. The effect of the composition parameter x on the mentioned optical properties is also studied. The combination of this and earlier work indicates that photodetection in the wide range of 1.2–8.4 THz is possible. The proposed structure can thus be regarded as a possible candidate for use in photodetection devices in different fields of industries such as imaging, medicine, and materials characterization.

Keywords

Absorption coefficient Close packing effect Electric field Three-dimensionally stacked quantum dots Finite difference method 

Notes

References

  1. 1.
    Lee, J.H., Wang, ZhM, Strom, N.W., Mazur, YuI, Salamo, G.J.: Appl. Phys. Lett. 89, 202101 (2006)CrossRefGoogle Scholar
  2. 2.
    Reimann, S.M.: Rev. Mod. Phys. 74, 1283 (2002)CrossRefGoogle Scholar
  3. 3.
    Li, S.S., Xia, J.B.: Appl. Phys. Lett. 91, 092119 (2007)CrossRefGoogle Scholar
  4. 4.
    Magnusdottir, I., Bischoff, S., Uskov, A.V., Mørk, J.: Phys. Rev. B 67, 205326 (2003)CrossRefGoogle Scholar
  5. 5.
    Rasanen, E., Harju, A., Puska, M.J., Nieminen, R.M.: Phys. Rev. B 69, 165309 (2004)CrossRefGoogle Scholar
  6. 6.
    Solaimani, M., Ghalandari, M., Lavaei, L.: J. Opt. Soc. Am. B 33, 420 (2016)CrossRefGoogle Scholar
  7. 7.
    Kuldova, K., Krapek, V., Hospodkova, A., Bonaventurova Zrzavecka, O., Oswald, J., Hulicius, E., Humlicek, J.: Mater. Sci. Eng. C 26, 983 (2006)CrossRefGoogle Scholar
  8. 8.
    A.H. Rodriguez, H.Y. Ramirez, Eur. Phys. J. B 235 (2008)Google Scholar
  9. 9.
    Hwang, T.M., Lin, W.W., Wang, W.C., Wang, W.: J. Comput. Phys. 196, 208 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Munoz, E., Barticevic, Z., Pacheco, M.: Phys. Rev. B 71, 165301 (2005)CrossRefGoogle Scholar
  11. 11.
    Zhou, J., Yang, R.: J. Appl. Phys. 110, 084317 (2011)CrossRefGoogle Scholar
  12. 12.
    Szafran, B., Peeters, F.M., Bednarek, S.: Phys. Rev. B 75, 115303 (2007)CrossRefGoogle Scholar
  13. 13.
    Zeng, Y., Fu, Y., Chen, X., Lu, W., Agren, H.: Phys. Rev. B 74, 115325 (2006)CrossRefGoogle Scholar
  14. 14.
    Verma, V.B., Elarde, V.C., Coleman, J.J.: IEEE J. Quantum Electron. 45, 10 (2009)CrossRefGoogle Scholar
  15. 15.
    Elarde, V.C., Coleman, J.J., IEEE Photonics Technol. Lett. 20, 240 (2008)CrossRefGoogle Scholar
  16. 16.
    Qi, J., Mao, C., White, J.M., Belcher, A.M.: Phys. Rev. B 68, 125319 (2003)CrossRefGoogle Scholar
  17. 17.
    Dai, Z.H., Sun, J.Z., Zhang, L.D., Li, Z.H., Huang, S.Y.G.: Phys. E 18, 412 (2003)CrossRefGoogle Scholar
  18. 18.
    Yi, J.C.: Microelectron. J. 39, 369 (2008)CrossRefGoogle Scholar
  19. 19.
    Ji, Liang-Wen, Fang, Te-Hua, Meen, Teen-Hang: Phys. Lett. A 355, 118 (2006)CrossRefGoogle Scholar
  20. 20.
    Dubrovskii, V.G., Cirlin, G.E., Musikhin, Y.G., Samsonenko, Y.B., Tonkikh, A.A., Polyakov, N.K., Egorov, V.A., Tsatsul’nikov, A.F., Krizhanovskaya, N.A., Ustinov, V.M., Werner, P.: J. Cryst. Growth 267, 47 (2004)CrossRefGoogle Scholar
  21. 21.
    Mendez, E.E., AgulloRueda, F., Hong, J.M.: Phys. Rev. Lett. 60, 2426 (1988)CrossRefGoogle Scholar
  22. 22.
    Baskoutas, S., Paspalakis, E., Terzis, A.F.: J. Phys. Condens. Matter 19, 395024 (2007)CrossRefGoogle Scholar
  23. 23.
    Solaimani, M.: Optik 126, 4372 (2015)CrossRefGoogle Scholar
  24. 24.
    Ren, G.B., Rorison, J.M.: Phys. Rev. E 69, 036705 (2004)CrossRefGoogle Scholar
  25. 25.
    Ozmen, A., Yakar, Y., Cakir, B., Atav, U.: Opt. Commun. 282, 3999 (2009)CrossRefGoogle Scholar
  26. 26.
    Martin-Delgado, M.A., Sierra, G., Noac, R.M.: J. Phys. A Math. Gen. 32, 6079 (1999)CrossRefGoogle Scholar
  27. 27.
    Porras-Montenegro, N., Perez-Merchancano, S.T.: Phys. Rev. B 46, 9780 (1992)CrossRefGoogle Scholar
  28. 28.
    Bose, C., Sarkar, C.K.: Phys. B 253, 238 (1998)CrossRefGoogle Scholar
  29. 29.
    Huang, Y.S., Yang, C.C., Liaw, S.S.: Phys. Rev. A 60, 85 (1999)CrossRefGoogle Scholar
  30. 30.
    Singh, J.: J. Appl. Phys. 59(8), 2953 (1986)CrossRefGoogle Scholar
  31. 31.
    Krause, J.L., Reitze, D.H., Sanders, G.D., Kuznetsov, A.V., Stanton, C.J.: Phys. Rev. B 57, 9024 (1998)CrossRefGoogle Scholar
  32. 32.
    Soylu, A., Boztosun, I.: Phys. E 40, 443 (2008)CrossRefGoogle Scholar
  33. 33.
    Ferguson, B., Zhang, X.C.: Nat. Mater. 1, 26 (2002)CrossRefGoogle Scholar
  34. 34.
    Williams, B.S.: Nat. Photonics 1, 517 (2007)CrossRefGoogle Scholar
  35. 35.
    Grundmann, M., Weber, A., Goede, K., Ustinov, V., Zhukov, A., Ledentsov, N., et al.: Appl. Phys. Lett. 77, 4 (2000)CrossRefGoogle Scholar
  36. 36.
    Chu, L., Zrenner, A., Böhm, G., Abstreiter, G.: Appl. Phys. Lett. 76, 1944 (2000)CrossRefGoogle Scholar
  37. 37.
    Solaimani, M., Lavaei, L., Aleomraninejad, S.M.A.: J. Opt. Soc. Am. B 34, 1989 (2017)CrossRefGoogle Scholar
  38. 38.
    Solaiman, M.: J. Comput. Electron. 17, 1135 (2018)CrossRefGoogle Scholar
  39. 39.
    Solaimani, M.: Solid State Commun. 200, 66 (2014)CrossRefGoogle Scholar
  40. 40.
    Solaimani, M., Morteza, I., Arabshahi, H., Mohammad Reza, S.: J. Lumin. 134, 699 (2013)CrossRefGoogle Scholar
  41. 41.
    M. Sabzevar, M. H. Ehsani, M. Solaimani, M. Ghorbani J. Opt. Soc. Am. B (2019)Google Scholar
  42. 42.
    Solaimani, M., Aleomraninejad, S.M.A.: J. Electron. Mater. 48, 942 (2019)CrossRefGoogle Scholar
  43. 43.
    Xiong, Y., Zhang, X.: J. Appl. Phys. 125, 093103 (2019)CrossRefGoogle Scholar
  44. 44.
    Panda, D., Saha, J., Das, D., Singh, S.M., Rawool, H., Chakrabarti, S.: J. Appl. Phys. 126, 125705 (2019)CrossRefGoogle Scholar
  45. 45.
    Mobini, A., Solaimani, M.: Phys. E 101, 162 (2018)CrossRefGoogle Scholar
  46. 46.
    Anantathanasarn, S., Notzel, R., van Veldhoven, P.J., van Otten, F.W.M., Eijkemans, T.J., Barbarin, Y., de Vries, T., Smalbrugge, E., Geluk, E.J., Bente, E.A.J.M., Oei, Y.S., Smit, M.K., Wolter, J.H.: J. Cryst. Growth 298, 553 (2007)CrossRefGoogle Scholar
  47. 47.
    Adachi, S.: J. Appl. Phys. 58, R1 (1985)CrossRefGoogle Scholar
  48. 48.
    Weaire, D.: Forma 14, 279 (1999)MathSciNetGoogle Scholar
  49. 49.
    Berezovskyi, O.A.: Cybernetics and systems analysis 50, 634 (2014)MathSciNetCrossRefGoogle Scholar
  50. 50.
    W. Huang, Y. Liang, Serial symmetrical relocation algorithm for the equal sphere packing problem (2012) http://arxiv.org/abs/1202.4149
  51. 51.
    Nurmela, K.J., Ostergard, P.R.J.: Discrete Comput. Geom. 18, 111 (1997)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Kottwitz, D.A.: Acta Crystallogr. A 47, 158 (1995)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Huang, W., Ye, T.: Oper. Res. Lett. 38, 378 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceQom University of TechnologyQomIran

Personalised recommendations