A novel model for digital predistortion based on a gravitational search algorithm for linearization of transmitters in LTE networks

  • Ahmad Rahati BelabadEmail author
  • Saeed Sharifian
  • Seyed Ahmad Motamedi
  • Negin Gholizadeh


A high-performance model with a gravitational search algorithm (GSA)-based generalized parallel two-box (GPTB) structure is suggested for digital predistortion in modern transmitters exhibiting memory effects, where the GSA is applied to identify the minimum dimension for the GPTB model. An indirect learning structure in conjunction with the GSA method is employed to identify the coefficients of the GSA-based GPTB model. The GPTB–GSA method is verified using simulations of a transmitter excited by quadrature amplitude modulation (QAM) signals in ADS software and simulations of the GSA in MATLAB software. The MATLAB results demonstrate the ability of the GSA to determine the dimension of the GPTB model efficiently. Also, the adjacent channel power ratio (ACPR) measure is decreased by about 16 dB according to the simulation. The proposed model and algorithm can reduce the number of coefficients by approximately 25% in comparison with the memory polynomial model.


Power amplifier (PA) Generalized parallel two-box (GPTB) model Gravitational search algorithm (GSA) Memory effects Behavioral modeling Digital predistortion (DPD) 



  1. 1.
    Rahati Belabad, A., Iranpour, E., Sharifian, S.: FPGA implementation of a Hammerstein based digital predistorter for linearizing RF power amplifiers with memory effects. Amirkabir Int. J. Electr. Electron. Eng. 47(2), 9–17 (2015)Google Scholar
  2. 2.
    Marsalek, R.: Contributions to the power amplifier linearization using digital baseband adaptive predistortion, Ph.D. Dissertation, Universite de Marne La Vallee (2003)Google Scholar
  3. 3.
    Jung, S., Park, H., Kim, M., Ahn, G., Van, J., Hwangbo, H., Park, C., Park, S., Yang, Y.: A new envelope predistorter with envelope delay taps for memory effect compensation. IEEE Trans. Microw. Theory Tech. 55(1), 52–59 (2007)CrossRefGoogle Scholar
  4. 4.
    Yamauchi, K., Mori, K., Nakayama, M., Mitsui, Y., Takagi, T.: A microwave miniaturized linearizer using a parallel diode. In: Proceeding IEEE MTT-S International Microwave Symposium Digest, pp. 1199–1202. (1997)Google Scholar
  5. 5.
    Lim, K., Ahn, G., Jung, S., Park, H., Kim, M., Van, J., Cho, H., Jeong, J., Park, C., Yang, Y.: A 60 watt multi-carrier WCDMA power amplifier using an RF predistorter. IEEE Trans. Circuits Syst. II Exp. Briefs 59(4), 265–269 (2009)Google Scholar
  6. 6.
    Yi, J., Yang, Y., Park, M.G., Kang, W.W., Kim, B.: Analog predistortion linearizer for high-power RF amplifiers. IEEE Trans. Microw. Theory Tech. 48(12), 2709–2713 (2000)CrossRefGoogle Scholar
  7. 7.
    Cha, J., Yi, J., Kim, J., Kim, B.: Optimum design of a predistortion RF power amplifier for multicarrier WCDMA applications. IEEE Trans. Microw. Theory Tech. 52(2), 655–663 (2004)CrossRefGoogle Scholar
  8. 8.
    Nojima, T., Konno, T.: Cuber predistortion linearizer for relay equipment in 800 MHz band land mobile telephone system. EEE Trans. Veh. Technol. 34(4), 169–177 (1985)CrossRefGoogle Scholar
  9. 9.
    Qian, Hua, Huang, Hao, Yao, Saijie: A general adaptive digital predistortion architecture for stand-alone RF power amplifiers. IEEE Trans. Broadcast. 59(3), 528–538 (2013)CrossRefGoogle Scholar
  10. 10.
    Younes, Mayada, Ghannouchi, Fadhel M.: An accurate predistorter based on a feedforward Hammerstein structure. IEEE Trans. Broadcast. 58(3), 454–461 (2012)CrossRefGoogle Scholar
  11. 11.
    Ghannouchi, Fadhel M., Hammi, Oualid: Behavioral modeling and predistortion. IEEE Microwave Mag. 10(7), 52–64 (2009)CrossRefGoogle Scholar
  12. 12.
    Hammi, Oualid, Ghannouchi, Fadhel M.: Twin nonlinear two-box models for power amplifiers and transmitters exhibiting memory effects with application to digital predistortion. IEEE Microwave Wirel. Compon. Lett. 19(8), 530–532 (2009)CrossRefGoogle Scholar
  13. 13.
    Karimi, G., Lotfi, A.: An analog/digital pre-distorter using particle swarm optimization for RF power amplifiers. AEU Int. J. Electron. Commun. 67(8), 723–728 (2013)CrossRefGoogle Scholar
  14. 14.
    Liu, T., Boumaiza, S., Ghannouchi, F.M.: Augmented Hammerstein predistorter for linearization of broad-band wireless transmitters. IEEE Trans. Microw. Theory Tech. 54(4), 1340–1349 (2006)CrossRefGoogle Scholar
  15. 15.
    Kenney, J.S., Woo, W., Ding, L., Raich, R., Ku, H., Zhou, G.T.: The impact of memory effects on predistortion linearization of RF power amplifiers. In: Proceedings 8th International Symposium on Microwave and Optic Technology, pp. 189–193. (2001)Google Scholar
  16. 16.
    Moon, Junghwan, Kim, Bumman: Enhanced Hammerstein behavioral model for broadband wireless transmitters. IEEE Trans. Microw. Theory Tech. 59(4), 924–933 (2011)CrossRefGoogle Scholar
  17. 17.
    Penrose, R.: A generalized inverse for matrices. In Proceedings of the Cambridge Philosophical Society, pp. 406–413. (1955)CrossRefGoogle Scholar
  18. 18.
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 3rd edn. Springer, Berlin (2002)CrossRefGoogle Scholar
  19. 19.
    Austin, A.C., Afisiadis, O., Burg, A.: Digital predistortion of hardware impairments for full-duplex transceivers. In: Proceedings IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, QC, Canada, pp. 878–882. (2017)Google Scholar
  20. 20.
    Seo, Mincheol, Kim, Kyungwon, Kim, Minsu, Kim, Hyungchul, Jeon, Jeongbae, Park, Myung-Kyu, Lim, Hyojoon, Yang, Youngoo: Ultrabroadband linear power amplifier using a frequency-selective analog predistorter. IEEE Trans. Circuits Syst. II 58(5), 264–268 (2011)CrossRefGoogle Scholar
  21. 21.
    Cho, Y., Lee, J., Jin, S., Park, B., Moon, J., Kim, J., Kim, B.: Fully integrated CMOS saturated power amplifier with simple digital predistortion. IEEE Microw. Wirel. Compon. Lett. 24(8), 533–535 (2014)CrossRefGoogle Scholar
  22. 22.
    Gavell, M., Granstrm, G., Fager, C., Gunnarsson, S.E., Ferndahl, M., Zirath, H.: An E-band analog predistorter and power amplifier MMIC chipset. IEEE Microw. Wirel. Compon. Lett. 28(1), 31–33 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ahmad Rahati Belabad
    • 1
    Email author
  • Saeed Sharifian
    • 1
  • Seyed Ahmad Motamedi
    • 1
  • Negin Gholizadeh
    • 1
  1. 1.Department of Electrical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations