Advertisement

Low on-resistance 4H-SiC UMOSFET with local floating superjunction

  • Jinyoung Goh
  • Kwangsoo KimEmail author
Article
  • 31 Downloads

Abstract

This paper introduces an improved on-resistance 4H-SiC UMOSFET structure. Compared to conventional p-shielding UMOSFETs, the proposed 4H-SiC UMOSFET with a local floating superjunction (LFS) exhibits lower on-resistance while maintaining a breakdown voltage of 1700 V. The structure has a superjunction located beneath the p-shielding. It was optimized for various parameters to reduce the on-resistance while maintaining the breakdown voltage. The on-resistances of a conventional UMOSFET and the optimized LFS-UMOSFET are 13.75 and 8.68 \( {\text{m}}\Omega \,{\text{cm}}^{2} \), respectively, when the gate voltage is 10 V. The proposed UMOSFET showed a 36.8% reduction in the specific on-resistance, the figure of merit was improved by 35.1%, and the maximum current density was improved by 29%. Also body diode characteristic and UIS test are confirmed. All the results are demonstrated by Sentaurus TCAD simulation.

Keywords

4H-SiC UMOSFET Local floating superjunction On-resistance Breakdown voltage 

Notes

Acknowledgements

This research was supported by the KIAT (Korea Institute for the Advancement of Technology), supervised by the MOTIE (Ministry of Trade, Industry and Energy) (N0001594) and by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2018-0-01421) supervised by the IITP (Institute for Information & communications Technology Promotion).

References

  1. 1.
    Baliga, B.J.: Fundamentals of Power Semiconductor Devices. Springer, New York (2008)CrossRefGoogle Scholar
  2. 2.
    Baliga, B.J.: Advanced Power MOSFET Concepts. Springer, New York (2010)CrossRefGoogle Scholar
  3. 3.
    Baliga, B.J.: Silicon Carbide Power MOSFET. Springer, New York (2006)CrossRefGoogle Scholar
  4. 4.
    Saxena, R.S., Kumar, M.J.: Trench gate power MOSFET: Recent advances and innovations. In: Jit, S. (ed.) Advances in Microelectronics and Photonics, Chapter 1, pp. 1–23. Nova Science Publishers Inc, New York (2012)Google Scholar
  5. 5.
    Hu, C., Lu, Q.: A unified gate oxide reliability model. In 1999 IEEE International Reliability Physics Symposium Proceedings. 37th Annual (Cat. No. 99CH36296), San Diego, CA, USA, pp. 47–51 (1999)Google Scholar
  6. 6.
    Kyoung, S., Hong, Y., Lee, M., Nam, T.: Designing 4H-SiC P-shielding trench gate MOSFET to optimize on-off electrical characteristics. Solid-State Electron. 140, 23–28 (2018)CrossRefGoogle Scholar
  7. 7.
    T.C.A.D. Synopsys Sentaurus Device Manual Synopsys, Inc, Mountain View, CA, USA (2012)Google Scholar
  8. 8.
    Udrea, F., Deboy, G., Fujihira, T.: Superjunction power devices history development and future prospects. IEEE Trans. Electron Devices 64(3), 713–727 (2017)CrossRefGoogle Scholar
  9. 9.
    Tian, K., Liu, J., Cui, J., Zhou, C., Zhang, A.: Novel designs of 4H-SiC trench gate metal-oxide-semiconductor field effect transistors (UMOSFETs) with low on-resistance. In: 2016 13th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), Beijing, pp. 35–37 (2016)Google Scholar
  10. 10.
    Zhou, X., Yue, R., et al.: 4H-SiC trench MOSFET with floating/grounded junction barrier-controlled gate structure. IEEE Trans. Electron. Dev. 64(11), 4568–4574 (2017).  https://doi.org/10.1109/TED.2017.2755721 CrossRefGoogle Scholar
  11. 11.
    Cézac, N., Moracho, F., Rossel, P., Tranduc, H., Peyre-Lavigne, A.: A new generation of power unipolar devices: the concept of the floating islands MOS transistor (FLIMOST). In: Proc. ISPSD, Toulouse, France, pp. 69–72 (2000)Google Scholar
  12. 12.
    Jahdi, S., Alatise, O., Bonyadi, R., Alexakis, P., Fisher, C.A., Gonzalez, J.A.O., et al.: An analysis of the switching performance and robustness of power MOSFETs body diodes: a technology evaluation. IEEE Trans. Power Electron. 30(5), 2383–2394 (2015)CrossRefGoogle Scholar
  13. 13.
    Wang, Y., Ma, Y.-C., Hao, Y., Hu, Y., Wang, G., Cao, F.: Simulation study of 4H-SiC UMOSFET structure with p+-polySi/SiC shielded region. IEEE Trans. Electron Devices 64(9), 3719–3724 (2017)CrossRefGoogle Scholar
  14. 14.
    Wei, J., Zhang, M., Jiang, H., Wang, H., Chen, K.J.: Charge storage effect in SiC trench MOSFET with a floating p-shield and its impact on dynamic performances. In: Proc. IEEE 29th Int. Symp. Power Semiconductor Devices ICs (ISPSD), Sapporo, Japan, May/June 2017, pp. 387–390Google Scholar
  15. 15.
    Horff, R., März, A., Bakran, M.-M.: Analysis of reverse-recovery behavior of SiC MOSFET body diode-regarding dead-time. In: PCIM (2015)Google Scholar
  16. 16.
    Vishay Siliconix, Unclamped inductive switching rugged MOSFETs for rugged environments, AN601 (1994)Google Scholar
  17. 17.
    Yang, L., Fayyaz, A., Castellazzi, A.: Characterization of high-voltage SiC MOSFETs under UIS avalanche stress. In: Proc. 7th IET Int. Conf. Power Electron. Mach. Drives, pp. 1–5, 8–10 April 2014Google Scholar
  18. 18.
    Fayyaz, A., Castellazi, A., Romano, G., Riccio, M., Irace, A., Urresti, J., Wright, N.: UIS failure mechanism of SiC power MOSFETs. In: Proc. of WIPDA, pp. 118–122 (2016)Google Scholar
  19. 19.
    Nanen, Y., Aketa, M., Asahara, H., Nakamura, T.: Estimation of junction temperature at failure of SiC DMOSFETs in UIS test. In: 2016 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK), Kyoto, pp. 1–2 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronic EngineeringSogang UniversitySeoulKorea

Personalised recommendations