Advertisement

Near-room-temperature spin caloritronics in a magnetized and defective zigzag MoS2 nanoribbon

  • Farahnaz Zakerian
  • Morteza FathipourEmail author
  • Rahim Faez
  • Ghafar Darvish
Article
  • 32 Downloads

Abstract

Using a tight-binding approach and first-principles calculations combined with the nonequilibrium Green’s function method, the thermal spin transport in a zigzag molybdenum disulfide (\(\hbox{MoS}_2\)) nanoribbon in the proximity of a ferromagnetic insulator that induces a local exchange magnetic field in the center of the nanoribbon is investigated. It is found that a pure spin current and perfect spin Seebeck effect with zero charge current can be generated by applying a thermal gradient and local exchange magnetic field without a bias voltage near room temperature. Furthermore, it is shown that this nanoscale device can act as a spin Seebeck diode for the control of thermal and spin information in spin caloritronics applications. Finally, the impact of structural defects including edge and Stone–Wales defects on the spin figure of merit is studied. It is then shown that the spin figure of merit can be higher for a magnetized and defective \(\hbox{MoS}_2\) nanoribbon. The results of this work facilitate deep understanding of the effects of structural defects on the thermoelectric properties of \(\hbox{MoS}_2\) nanoribbons and indicate their great potential for use in spin caloritronics devices for operation at room temperature.

Keywords

\(\hbox{MoS}_2\) nanoribbon Spin caloritronics Nonequilibrium Green’s function Spin Seebeck effect Stone–Wales (SW) defects 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Johnson, M., Silsbee, R.H.: Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system. Phys. Rev. B 35, 4959–4972 (1987)CrossRefGoogle Scholar
  2. 2.
    Uchida, K., Takahashi, S., Harii, K., Ieda, J., Koshibae, W., Ando, K., Maekawa, S., Saitoh, E.: Observation of the spin Seebeck effect. Nature 455, 778–781 (2008)CrossRefGoogle Scholar
  3. 3.
    Jaworski, C.M., Yang, J., MacK, S., Awschalom, D.D., Heremans, J.P., Myers, R.C.: Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat. Mater. 9, 898–903 (2010)CrossRefGoogle Scholar
  4. 4.
    Uchida, K., Xiao, J., Adachi, H., Ohe, J., Takahashi, S., Ieda, J., Ota, T., Kajiwara, Y., Umezawa, H., Kawai, H., Bauer, G.E.W., Maekawa, S., Saitoh, E.: Spin Seebeck insulator. Nat. Mater. 9, 894–897 (2010)CrossRefGoogle Scholar
  5. 5.
    Zhou, B., Zhou, B., Zeng, Y., Zhou, G., Ouyang, T.: Spin-dependent Seebeck effects in a graphene nanoribbon coupled to two square lattice ferromagnetic leads. J. Appl. Phys. 117, 104305 (2015)CrossRefGoogle Scholar
  6. 6.
    Li, J., Wang, B., Xu, F., Wei, Y., Wang, J.: Spin-dependent Seebeck effects in graphene-based molecular junctions. Phys. Rev. B 93, 195426–195436 (2016)CrossRefGoogle Scholar
  7. 7.
    Wu, D.D., Liu, Q.B., Fu, H.H., Wu, R.: How to realize a spin-dependent Seebeck diode effect in metallic zigzag \(\gamma\)-graphyne nanoribbons. Nanoscale 9, 18334–18342 (2017)CrossRefGoogle Scholar
  8. 8.
    Ezawa, M.: Spin filter, spin amplifier and spin diode in graphene nanodisk. Eur. Phys. J. B 67, 543–549 (2009)CrossRefGoogle Scholar
  9. 9.
    Benenti, G., Casati, G., Saito, K., Whitney, R.S.: Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Phys. Rep. 694, 1–124 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Mahan, G.D., Sofo, J.O.: The best thermoelectric. Proc. Natl. Acad. Sci. U.S. A. 93, 7436–7439 (1996)CrossRefGoogle Scholar
  11. 11.
    Flipse, J., Bakker, F.L., Slachter, A., Dejene, F.K., Van Wees, B.J.: Direct observation of the spin-dependent Peltier effect. Nat. Nanotechnol. 7, 166–168 (2012)CrossRefGoogle Scholar
  12. 12.
    Dejene, F.K., Flipse, J., Bauer, G.E.W., Van Wees, B.J.: Spin heat accumulation and spin-dependent temperatures in nanopillar spin valves. Nat. Phys. 9, 636–639 (2013)CrossRefGoogle Scholar
  13. 13.
    Walter, M., Walowski, J., Zbarsky, V., Münzenberg, M., Schäfers, M., Ebke, D., Reiss, G., Thomas, A., Peretzki, P., Seibt, M., Moodera, J.S., Czerner, M., Bachmann, M., Heiliger, C.: Seebeck effect in magnetic tunnel junctions. Nat. Mater. 10, 742–746 (2011)CrossRefGoogle Scholar
  14. 14.
    Wilczyński, M.: Thermopower, figure of merit and spin-transfer torque induced by the temperature gradient in planar tunnel junctions. J. Phys.: Condens. Matter 23, 456001 (2011)Google Scholar
  15. 15.
    Frota, H.O., Ghosh, A.: Spin caloritronics in graphene. Solid State Commun. 191, 30–34 (2014)CrossRefGoogle Scholar
  16. 16.
    Zhai, X., Gao, W., Cai, X., Fan, D., Yang, Z., Meng, L.: Spin-valley caloritronics in silicene near room temperature. Phys. Rev. B 94, 245405 (2016)CrossRefGoogle Scholar
  17. 17.
    Liu, Y.S., Zhang, X., Yang, X.F., Hong, X.K., Feng, J.F., Si, M.S., Wang, X.F.: Spin caloritronics of blue phosphorene nanoribbons. Phys. Chem. Chem. Phys. 17, 10462–10467 (2015)CrossRefGoogle Scholar
  18. 18.
    Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin \(\text{ MoS }_2\): a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)CrossRefGoogle Scholar
  19. 19.
    Han, S.W., Kwon, H., Kim, S.K., Ryu, S., Yun, W.S., Kim, D.H., Hwang, J.H., Kang, J.-S., Baik, J., Shin, H.J., Hong, S.C.: Band-gap transition induced by interlayer van der Waals interaction in \(\text{ MoS }_2\). Phys. Rev. B 84, 045409 (2011)CrossRefGoogle Scholar
  20. 20.
    Ganatra, R., Zhang, Q.: Few-layer \(\text{ MoS }_2\): a promising layered semiconductor. ACS Nano 8, 4074–4099 (2014)CrossRefGoogle Scholar
  21. 21.
    Mak, K.F., He, K., Shan, J., Heinz, T.F.: Control of valley polarization in monolayer \(\text{ MoS }_2\) by optical helicity. Nat. Nanotechnol. 7, 494–8 (2012)CrossRefGoogle Scholar
  22. 22.
    Mak, K.F., McGill, K.L., Park, J., McEuen, P.L.: The valley Hall effect in \(\text{ MoS }_2\) transistors. Science 344, 1489–1492 (2014)CrossRefGoogle Scholar
  23. 23.
    Huang, W., Da, H., Liang, G.: Thermoelectric performance of MX2 (M Mo, W; X S, Se) monolayers. J. Appl. Phys. 113, 104304 (2013)CrossRefGoogle Scholar
  24. 24.
    Guo, H., Yang, T., Tao, P., Wang, Y., Zhang, Z.: High pressure effect on structure, electronic structure, and thermoelectric properties of \(\text{ MoS }_2\). J. Appl. Phys. 113, 013709 (2013)CrossRefGoogle Scholar
  25. 25.
    Wickramaratne, D., Zahid, F., Lake, R.K.: Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. J. Chem. Phys. 140, 124710 (2014)CrossRefGoogle Scholar
  26. 26.
    Fan, D.D., Liu, H.J., Cheng, L., Jiang, P.H., Shi, J., Tang, X.F.: \(\rm MoS_2\) nanoribbons as promising thermoelectric materials. Appl. Phys. Lett. 105, 133113 (2014)CrossRefGoogle Scholar
  27. 27.
    Patil, S.B., Sankeshwar, N.S., Mulimani, B.G.: Role of charged impurities in thermoelectric transport in molybdenum disulfide monolayers. J. Phys.: Condens. Matter 29, 485303 (2017)Google Scholar
  28. 28.
    Zhu, L., Zou, F., Gao, G., Yao, K.: Spin-dependent thermoelectric effects in \(Fe-C~6\) doped monolayer \(\rm MoS_2\). Sci. Rep. 7, 497 (2017)CrossRefGoogle Scholar
  29. 29.
    Lv, Y.Z., Zhao, P., Liu, D.S.: Spin caloritronic transport of \((2\times 1)\) reconstructed zigzag \(\rm MoS_2\) nanoribbons. Chin. Phys. Lett. 34, 107301 (2017)CrossRefGoogle Scholar
  30. 30.
    Rostami, H., Asgari, R.: Valley Zeeman effect and spin-valley polarized conductance in monolayer \(\rm MoS_2\) in a perpendicular magnetic field. Phys. Rev. B Condens. Matter Mater. Phys. 91, 075433 (2015)CrossRefGoogle Scholar
  31. 31.
    Khoeini, F., Shakouri, K., Peeters, F.M.: Peculiar half-metallic state in zigzag nanoribbons of \(\text{ MoS }_2\): spin filtering. Phys. Rev. B 94, 125412 (2016)CrossRefGoogle Scholar
  32. 32.
    Roldán, R., López-Sancho, M.P., Guinea, F., Cappelluti, E., Silva-Guillén, J.A., Ordejón, P.: Momentum dependence of spin-orbit interaction effects in single-layer and multi-layer transition metal dichalcogenides. 2D Mater. 1, 034003 (2014)CrossRefGoogle Scholar
  33. 33.
    Cheng, S.G.: Spin thermopower and thermoconductance in a ferromagnetic graphene nanoribbon. J. Phys.: Condens. Matter 24, 385302 (2012)Google Scholar
  34. 34.
    Sancho, M.P.L., Sancho, J.M.L., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F Met. Phys. 14, 1205–1215 (1984)CrossRefGoogle Scholar
  35. 35.
    Zberecki, K., Wierzbicki, M., Barnaå, J., Swirkowicz, R.: Thermoelectric effects in silicene nanoribbons. Phys. Rev. B Condens. Matter Mater. Phys. 88, 115404 (2013)CrossRefGoogle Scholar
  36. 36.
    Świrkowicz, R., Wierzbicki, M., Barnaś, J.: Thermoelectric effects in transport through quantum dots attached to ferromagnetic leads with noncollinear magnetic moments. Phys. Rev. B Condens. Matter Mater. Phys. 80, 195409 (2009)CrossRefGoogle Scholar
  37. 37.
    Trocha, P., Barna, J.: Large enhancement of thermoelectric effects in a double quantum dot system due to interference and Coulomb correlation phenomena. Phys. Rev. B Condens. Matter Mater. Phys. 85, 085408 (2012)CrossRefGoogle Scholar
  38. 38.
    Zhang, Z., Xie, Y., Peng, Q., Chen, Y.: A theoretical prediction of super high-performance thermoelectric materials based on \(\rm MoS_2/WS_2\) hybrid nanoribbons. Sci. Rep. 6, 13706 (2016)Google Scholar
  39. 39.
    Menichetti, G., Grosso, G., Parravicini, G.P.: Analytic treatment of the thermoelectric properties for two coupled quantum dots threaded by magnetic fields. J. Phys. Commun. 2, 055026 (2018)CrossRefGoogle Scholar
  40. 40.
    Zhang, Z., Xie, Y., Peng, Q., Chen, Y.: A theoretical prediction of super high-performance thermoelectric materials based on \(\rm MoS_2/WS_2\) hybrid nanoribbons. Sci. Rep. 6, 21639 (2016)CrossRefGoogle Scholar
  41. 41.
    Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 2745–2779 (2002)Google Scholar
  42. 42.
    Brandbyge, M., Mozos, J.L., Ordejón, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B Condens. Matter Mater. Phys. 65, 165401 (2002)CrossRefGoogle Scholar
  43. 43.
    Ceperley, D.M., Alder, B.J.: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980)CrossRefGoogle Scholar
  44. 44.
    Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981)CrossRefGoogle Scholar
  45. 45.
    Swartz, A.G., Odenthal, P.M., Hao, Y., Ruoff, R.S., Kawakami, R.K.: Integration of the ferromagnetic insulator EuO onto graphene. ACS Nano 6, 10063–10069 (2012)CrossRefGoogle Scholar
  46. 46.
    Chu, R.L., Bin Liu, G., Yao, W., Xu, X., Xiao, D., Zhang, C.: Spin-orbit-coupled quantum wires and Majorana fermions on zigzag edges of monolayer transition-metal dichalcogenides. Phys. Rev. B Condens. Matter Mater. Phys. 89, 155317 (2014)CrossRefGoogle Scholar
  47. 47.
    Ghorbani-Asl, M., Enyashin, A.N., Kuc, A., Seifert, G., Heine, T.: Defect-induced conductivity anisotropy in \(\text{ MoS }_2\) monolayers. Phys. Rev. B Condens. Matter Mater. Phys. 88, 245440 (2013)CrossRefGoogle Scholar
  48. 48.
    Ma, J., Alfè, D., Michaelides, A., Wang, E.: Stone–Wales defects in graphene and other planar \(sp^{2}\)-bonded materials. Phys. Rev. B Condens. Matter Mater. Phys. 80, 033407 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Device Simulation and Modeling Laboratory, Department of Electrical and Computer Engineering, Faculty of EngineeringUniversity of TehranTehranIran
  3. 3.Electrical Engineering DepartmentSharif University of TechnologyTehranIran

Personalised recommendations