Advertisement

Journal of Computational Electronics

, Volume 18, Issue 4, pp 1207–1213 | Cite as

An analytical model for the effects of the variation of ferroelectric material parameters on the minimum subthreshold swing of NC-FETs

  • Raheela RasoolEmail author
  • Najeeb-ud-Din
  • G. M. Rather
Article
  • 80 Downloads

Abstract

The relationships between the coercive field (EC), remanent polarization (P0), and thickness (tFE) of a ferroelectric material are derived analytically to determine the minimum subthreshold swing (Smin) of a negative-capacitance field-effect transistor (NC-FET). The interdependence of the ferroelectric material properties is defined based on the capacitance matching condition in the subthreshold region of the NC-FET. An optimized combination of the parameters of the ferroelectric material in a gate stack is proposed to achieve transfer characteristics without hysteresis as well as lower subthreshold swing. The results are validated against numerical and experimental results available in literature. Furthermore, the minimum possible subthreshold swing (Smin) is obtained for different ferroelectric materials used in the gate stack of an NC-FET in the context of a manufacturable semiconductor technology. The channel doping, ferroelectric thickness, and minimum subthreshold are calculated for five different ferroelectric materials.

Keywords

NC-FET Ferroelectrics Subthreshold swing Negative capacitance 

Notes

References

  1. 1.
    Salahuddin, S., Datta, S.: Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8(2), 405–410 (2008)CrossRefGoogle Scholar
  2. 2.
    Khan, A.I., Bhowmik, D., Yu, P., et al.: Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Appl. Phys. Lett. 99(11), 113501 (2011)CrossRefGoogle Scholar
  3. 3.
    Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010)CrossRefGoogle Scholar
  4. 4.
    Gopalakrishnan, K., Woo, R., Jungemann, C., et al.: Impact ionization MOS (I-MOS) —Part I: device and circuit simulation. IEEE Trans. Electron Devices 52(1), 69–76 (2005)CrossRefGoogle Scholar
  5. 5.
    Devonshire, A.F.: Theory of ferroelectrics. Adv. Phys. 3(10), 85–130 (1954)CrossRefGoogle Scholar
  6. 6.
    Rabe, K. M., Ahn, C. H., Triscone, J. M.: Physics of ferroelectrics: a modern perspective. Berlin (2007)Google Scholar
  7. 7.
    Ginzburg, V.L.: Phase transitions in ferroelectrics: some historical remarks. UFN 171(10), 1091–1097 (2001)CrossRefGoogle Scholar
  8. 8.
    Rusu, A., Salvatore, G. A., Jimenez, D., Ionescu, A. M.: Metal-ferroelectric-metal-oxide semiconductor field effect transistor with Sub-60 mV/decade subthreshold swing and voltage amplification. IEEE Int. Electron Devices Meet. 16.3.1–16.3.4 (2010)Google Scholar
  9. 9.
    Taur, Y., Ning, T., Fundamentals of Modern VLSI Device. Cambridge (1998)Google Scholar
  10. 10.
    Rasool, R., Rather, G.M., Najeeb-ud-Din: Analytic model for the electrical properties of negative capacitance metal-ferroelectric-insulator-silicon (MFIS) capacitor. Integr. Ferroelectr. 185, 93–101 (2017)CrossRefGoogle Scholar
  11. 11.
    Jain, A., Alam, M.A.: Prospects of hysteresis free abrupt switching (0 mV/decade) in Landau switches. IEEE Trans. Electron Devices 60(12), 4269–4276 (2013)CrossRefGoogle Scholar
  12. 12.
    Khan, A. I., Yeung, C.W., Hu C., Salahuddin, S.: Ferroelectric negative capacitance MOSFET: capacitance tuning & antiferroelectric operation. IEEE Int. Electron Devices Meet. 11.3.1–11.3.4 (2011)Google Scholar
  13. 13.
    Seeger, J.I., Crary, S.B.: Analysis and simulation of MOS capacitor feedback for stabilizing electrostatically actuated mechanical devices. Trans. Built. Environ. 31(13), 199–208 (1997)Google Scholar
  14. 14.
    Krowne, C.M., Kirchoefer, S.W., Chang, W., et al.: Examination of possibility of negative capacitance using ferroelectric materials in solid state electronic devices. Nanoletters 11(3), 988–992 (2011)CrossRefGoogle Scholar
  15. 15.
    Jain, A., Alam, M.A.: Stability constraints define the minimum subthreshold swing of a negative capacitance field-effect transistor. IEEE Trans. Electron Devices 61(7), 2235–2242 (2014)CrossRefGoogle Scholar
  16. 16.
    Jiménez, D., Miranda, E., Godoy, A.: Analytic model for the surface potential and drain current in negative capacitance field-effect transistors. IEEE Trans. Electron Devices 57(10), 2405–2409 (2010)CrossRefGoogle Scholar
  17. 17.
    Pierret R. F. Semiconductor Device Fundamentals. Pearson, 1995Google Scholar
  18. 18.
    You, W.X., Tsai, C.P., Su, P.: Short channel effects in 2D negative-capacitance field effect transistors. IEEE Trans. Electron Devices 65(4), 1604–1610 (2018)CrossRefGoogle Scholar
  19. 19.
    Lee, H., Yoon, Y., Shin, C.: Current voltage model for negative capacitance field effect transistors. IEEE Electron Device Lett. 38(5), 669–672 (2017)CrossRefGoogle Scholar
  20. 20.
    Lin, C.I., Khan, A.I., Salahuddin, S., Hu, C.: Effects of the variation of ferroelectric properties on negative capacitance FET characteristics. IEEE Trans. Electron Devices 63(5), 2197–2199 (2016)CrossRefGoogle Scholar
  21. 21.
    Dasgupta, D., Rajashekhar, A., Majumdar, K., et al.: Sub-KT/Q switching in strong inversion in PbZr0.52Ti0.48O3 gated negative capacitance FETs. IEEE J. Explor. Solid State Comput. Devices Circ. 1, 43–48 (2015)CrossRefGoogle Scholar
  22. 22.
    Cano, A., Jimenez, D.: Multidomain ferroelectricity as a limiting factor for voltage amplification in ferroelectric field-effect transistors. Appl. Phys. Lett. 97(13), 133509 (2010)CrossRefGoogle Scholar
  23. 23.
    Boscke, T. S., Muller, J.,Bruhaus, D., et al.: Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors. IEEE Int. Electron Devices Meet. 24.5.1–25.5.4 (2011)Google Scholar
  24. 24.
    Li, Y., Lian, Y., Yao, K., et al.: Evaluation and optimization of short channel ferroelectric MOSFET for low power circuit application with BSIM4 and Landau theory. Solid State Electron. 114, 17–22 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and CommunicationNational Institute of TechnologySrinagarIndia

Personalised recommendations