Journal of Computational Electronics

, Volume 18, Issue 4, pp 1423–1434 | Cite as

An alternative method for implementation of frequency-encoded logic gates using a terahertz optical asymmetric demultiplexer (TOAD)

  • K. Maji
  • K. MukherjeeEmail author
  • A. Raja


All-optical frequency-encoded AND, OR, and NOT logic gates are proposed and their performance simulated to confirm their feasibility. Terahertz optical asymmetric demultiplexer (TOAD)-based logic gates with a control pulse energy as low as 50 fJ are used, and real-time simulations of their input and output pulse patterns reveal a rate of 20 Gbps. Such logic gates could be used for future all-optical logic processors for optical computation and communication systems.


Semiconductor optical amplifier Frequency encoding Logic gates TOAD Simulation 



  1. 1.
    Taleb, H., Abedi, K.: Ultrafast all-optical signal processing using optically pumped QDSOA-based Mach–Zehnder interferometers. IEEE J. Sel. Top. Quantum Electron. 19(5), 7600108 (2013)CrossRefGoogle Scholar
  2. 2.
    Belhadj, W., Saidani, N., Abdelmalek, F.: All optical logic gates based on coupled heterostructures waveguides in two dimensional photonic crystal. Optik 168, 237–243 (2018)CrossRefGoogle Scholar
  3. 3.
    Willner, A.E., Khaleghi, S., Chitgarah, M.R., Yilmaz, O.L.: All optical signal processing. J. Lightwave Technol. 32, 660 (2014)CrossRefGoogle Scholar
  4. 4.
    Dimitriadou, E., Zoiros, K.E.: All optical XOR gate using single quantum dot SOA and optical filter. J. Lightwave Technol. 31, 3813 (2013)CrossRefGoogle Scholar
  5. 5.
    Kowsari, A., Saghaei, H.: Resonantly enhanced all optical switching in microfiber Mach–Zehnder interferometers. Electron. Lett. 54(4), 229 (2018)CrossRefGoogle Scholar
  6. 6.
    Sasikala, V., Chitra, K.: All optical switching and associated technologies: a review. J. Opt. (2018). CrossRefGoogle Scholar
  7. 7.
    Kotb, A., Zoiros, K.E., Guo, C.: All optical XOR, NOR and NAND logic functions with parallel semiconductor optical amplifier based Mach–Zehnder interferometer modules. Opt. Laser Technol. 108, 426 (2018)CrossRefGoogle Scholar
  8. 8.
    Chattopadhyay, T.: All optical clocked delay flip flop using a single terahertz optical asymmetric demultiplexer based switch: a theoretical study. Appl. Opt. 49(28), 5226 (2010)CrossRefGoogle Scholar
  9. 9.
    Gayen, D.K., Chattopadhyay, T., Bhattacharya, A., Basak, S., Dey, D.: All optical half adder/half subtractor using tera hertz asymmetric demultiplexer. Appl. Opt. 53(36), 8400 (2014)CrossRefGoogle Scholar
  10. 10.
    Mondal, S., Samanta, S., Maity, G.K., Mukhopadhyay, S.: All optical reversible logic gate implementation using TOAD. Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 14(12), 664–677 (2016)Google Scholar
  11. 11.
    Das, R., Bhattacharya, A., Biswal, L.: All optical implementation of universal shift-register using terahertz optical asymmetric de-multiplexer based optical devices. In: 2018 International Symposium on Devices, Circuits and Systems (ISDCS) (2018)Google Scholar
  12. 12.
    Mukherjee, K.: Semiconductor optical amplifier based frequency encoded logic gates exploiting nonlinear polarization rotation only. J. Circuit Syst. Comput. 23(9), 1450130 (2014)CrossRefGoogle Scholar
  13. 13.
    Mukherjee, K.: Frequency encoded optical four bit adder/subtractor with control input using semiconductor optical amplifier. Optik 125(20), 6183 (2014)CrossRefGoogle Scholar
  14. 14.
    Mondal, D., Garai, S.K.: All optical logic unit (BLU) using frequency encoded data. Opt. Fiber Technol. 22, 56–67 (2015)CrossRefGoogle Scholar
  15. 15.
    Sarkar, P.P., Ghosh, B., Patra, S.N., Mukhopadhyay, S.: A new scheme of an all optical frequency encoded dibit based latch with its simulated result. J. Opt. Technol. 84(9), 631 (2017)CrossRefGoogle Scholar
  16. 16.
    Ghosh, B., Hazra, S., Haldar, N., Roy, D., Patra, S.N., Swarnakar, J., Sarkar, P.P., Mukhopadhyay, S.: A novel approach to realize of all optical frequency encoded dibit based XOR and XNOR logic gates using optical switches with simulated verification. Opt. Spectrosc. 124(3), 337 (2018)CrossRefGoogle Scholar
  17. 17.
    Mukherjee, K.: Terahertz optical asymmetric demultiplexer (TOAD) based frequency encoded all optical NOT gate. In: Proceedings of the International Conference on Laser, Materials, & Communication, pp 242–244, Burdwan, India, December 7 to 9, 2011, ISBN 983-93-80813-14-1Google Scholar
  18. 18.
    Mukherjee, K.: Terahertz optical asymmetric demultiplexer (TOAD) based frequency encoded all optical logic gates. In: Proceedings of National Conference on Electronics, Communication and Signal Processing (NCECS 2012), 19th September 2012, p. 111Google Scholar
  19. 19.
    Mukherjee, K., Raja, A.: Terahertz optical asymmetric demultiplexer (TOAD) based NAND gate. In: Proceedings of MDCCT, Burdwan (2018)Google Scholar
  20. 20.
    Sokolof, J.P., Prucnal, P.R., Glesk, I., Kane, M.: A terahertz optical asymmetric demultiplexer (TOAD). IEEE Photonics Technol. Lett. 5(7), 787–789 (1993)CrossRefGoogle Scholar
  21. 21.
    Taraphdar, C., Chattopadhyay, T., Roy, J.N.: Designing of an all optical scheme for single input ternary logical operations. Optik 122(1), 33–36 (2011)CrossRefGoogle Scholar
  22. 22.
    Eiselt, M., Pieper, W., Weber, H.G.: SLALOM: semiconductor laser amplifier in a loop mirror. J. Lightwave Technol. 13(10), 2099–2112 (1995)CrossRefGoogle Scholar
  23. 23.
    Kang, K.I., Chang, T.G., Glesk, I., Prucnal, P.R.: Comparison of Sagnac and Mach–Zehnder ultrafast all-optical interferometric switches based on a semi-conductor resonant optical nonlinearity. Appl. Opt. 35(3), 417–426 (1996)CrossRefGoogle Scholar
  24. 24.
    Roy, J.N., Maity, G.K., Gayen, D., Chattopadhyay, T.: Terahertz optical asymmetric demultiplexer based tree-net architecture for all-optical conversion scheme from binary to its other 2n radix based form. Chin. Opt. Lett. 6(7), 536–540 (2008)CrossRefGoogle Scholar
  25. 25.
    Wang, H., Wu, J., Lin, J.: Performance analysis on terahertz optical asymmetric demultiplexer with assist light injection. Opt. Commun. 256, 83–97 (2005)CrossRefGoogle Scholar
  26. 26.
    Barman, A.D., Fresi, F., Sengupta, I., Poti, L., Bogoni, A.: Cross talk mitigation by assist light in a TOAD demultiplexer. In: CODEC 09. IEEE (2009)Google Scholar
  27. 27.
    Ghosh, B., Halder, N., Roy, D., Hazra, S., Mukherjee, S., Sarkar, P.P.: An alternative approach to realize all optical frequency encoded integrated AND-OR logic gate with control input using optical switches and its simulative verification. Int. J. Comput. Sci. Eng. 7(Special Issue 1), 88–93 (2019)Google Scholar
  28. 28.
    Mondal, D., Mondal, S., Garai, S.K.: A new approach of developing all optical two bit binary data multiplier. Opt. Laser Technol. 64, 292–301 (2014)CrossRefGoogle Scholar
  29. 29.
    Sarkar, P.P., Ghosh, B., Patra, S.S.N.: Simulative study of all optical frequency encoded dibit based universal NAND and NOR logic gates using a reflective semiconductor optical amplifier and an add/drop multiplexer. Opt. Eng. 83(4), 257–262 (2016)Google Scholar
  30. 30.
    Sarkar, P.P., Hazra, S., Ghosh, B., Patra, S.N., Mukhopadhay, S.: Realization of all-optical frequency-encoded dibit-based OR and NOR logic gates with simulated verification. In: Proceedings of the International Conference on Advancement of Computer Communication and Electrical Technology (ACCET 2016), West Bengal, India, 21–22 October (2016). ISBN 9781138031579Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Post Graduate Department of PhysicsB B CollegeAsansolIndia

Personalised recommendations