Advertisement

Room-temperature high sensitivity of multiple tunnel junctions based on single-charge photodetection

  • Amine Touati
  • Samir ChatbouriEmail author
  • Adel Kalboussi
Article
  • 28 Downloads

Abstract

We successfully demonstrate the high stability at room temperature of a new design of single-photon detector based on multiple tunnel junctions with superior responsivity and high quantum efficiency. The single-photon detector uses one-dimensional (1D) multiple tunnel junctions (MTJs) with 12 islands and 13 tunnel junctions coupled with a silicon single-electron box. A single-electron transistor (SET) is used to read the charge state of a silicon quantum dot (Si-QD). The response of the single-photon detector (Si-QD and SET) is directly related to the photoconductivity gain in the MTJs with associated conductance steps produced by individual photocarriers. Numerical simulations confirm the high stability at room temperature of the single-photon detection. Moreover, an analytical model developed in MATLAB that takes account of the thermionic emission of charge carriers confirms the high stability of the single-photon detection at room temperature.

Keywords

Single-electron transistor 1D multiple tunnel junctions Single-photon detector Room-temperature operation Quantum efficiency 

Notes

References

  1. 1.
    Luo, W., Weng, Q., Long, M., Wang, P., Gong, F., Fang, H., Luo, M., Wang, W., Zhang, D., Hu, W.: Room-temperature single-photon detector based on single nanowire. Nano Lett. 9, 5439–5445 (2018)CrossRefGoogle Scholar
  2. 2.
    Touati, A., Kalboussi, A.: Volatile and non-volatile single electron memory. J. Nano Electron. Phys. 5(3), 03003.1–03003.7 (2013)Google Scholar
  3. 3.
    Chatbouri, S., Touati, A., Troudi, M., Sghaier, N., Kalboussi, A.: Multiple tunnel junction based nanowire photodetector model for single charge detection. Eur. Phys. J. Appl. Phys. 63, 10101 (2013)CrossRefGoogle Scholar
  4. 4.
    Touati, A., Chatbouri, S., Sghaier, N., Kalboussi, A.: Theoretical analysis and characterization of multi-islands single-electron devices with applications. Sci. World J. 2014, 7 (2014)CrossRefGoogle Scholar
  5. 5.
    Britnell, L., Ribeiro, R.M., Eckmann, A., Jalil, R., Belle, B.D., Mishchenko, A., Kim, Y.J., Gorbachev, R.V., Georgiou, T., Morozov, S.V., Grigorenko, A.N., Geim, A.K., Casiraghi, C., Neto, A.H.C., Novoselov, K.S.: Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013)CrossRefGoogle Scholar
  6. 6.
    Kosaka, H., Rao, D.S., Robinson, H.D., Bandaru, P., Sakamoto, T., Yablonovitch, E.: Photoconductance quantization in a single-photon detector. Phys. Rev. B 65, 201307-1–201307-6 (2002)CrossRefGoogle Scholar
  7. 7.
    Adinolfi, V., Sargent, E.H.: Photovoltage field-effect transistors. Nature 545, 252 (2017)CrossRefGoogle Scholar
  8. 8.
    Gansen, E.J., Rowe, M.A., Greene, M.B., Rosenberg, D., Harvey, T.E., Su, M.Y., Hadfield, R.H., Nam, S.W., Mirin, R.P.: Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor. Nat. Photon. 1, 585–588 (2007)CrossRefGoogle Scholar
  9. 9.
    Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., de Arquer, F.P.G., Gatti, F., Koppens, F.H.L.: Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012)CrossRefGoogle Scholar
  10. 10.
    Leung, Siu-Fung, Zhang, Qianpeng, Xiu, Fei, Dongliang, Yu., Ho, Johnny C., Li, Dongdong, Fan, Zhiyong: Light management with nanostructures for optoelectronic devices. J. Phys. Chem. Lett. 5, 1479–1495 (2014)CrossRefGoogle Scholar
  11. 11.
    Kosaka, H., Rao, D.S., Robinson, H.D., Bandaru, P., Makita, K., Yablonovitch, E.: Single photoelectron trapping, storage, and detection in a field effect transistor. Phys. Rev. B 67, 045104-1–045104-6 (2003)CrossRefGoogle Scholar
  12. 12.
    Tsai, D., Lin, C., Lien, W., Chang, H., Wang, Y., He, J.: Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays. ACS Nano 5, 7748–7753 (2011)CrossRefGoogle Scholar
  13. 13.
    Mitin, V., Antipov, A., Sergeev, A., Vagidov, N., Eason, D., Strasser, G.: Quantum dot infrared photodetectors: photoresponse enhancement due to potential barriers. Nanoscale Res. Lett. 6, 21 (2011)Google Scholar
  14. 14.
    Luo, X., Tomcsanyi, M., Orlov, A.O., Kosel, T.H., Snider, G.L.: Periodic Coulomb oscillations in Si single-electron transistor based on multiple islands. Appl. Phys. Lett. 89, 043511 (2006)CrossRefGoogle Scholar
  15. 15.
    Wassuber, C., Kosina, H., Selbertherr, S.: SIMON—a simulator for single-electron tunnel devices and circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 16(9), 937–944 (1997)CrossRefGoogle Scholar
  16. 16.
    Touati, A., Chatbouri, S., Sghaier, N., Kalboussi, A.: New model for drain and gate current of single-electron transistor at high temperature. World J. Nano Sci. Eng. 2(4), 171–175 (2012)CrossRefGoogle Scholar
  17. 17.
    Chen, Gui, Liang, Bo, Liu, Xi, Liu, Zhe, Gang, Yu., Xie, Xuming, Luo, Tao, Chen, Di, Zhu, Mingqiang, Shen, Guozhen, Fan, Zhiyong: High-performance hybrid phenyl-C61-butyric acid methyl ester/Cd3P2 nanowire ultraviolet-visible-near infrared photodetectors. ACS Nano 8(1), 787–796 (2014)CrossRefGoogle Scholar
  18. 18.
    Pospischil, A., Humer, M., Furchi, M.M., Bachmann, D., Guider, R., Fromherz, T., Mueller, T.: CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photon. 7, 892–896 (2013)CrossRefGoogle Scholar
  19. 19.
    Jiang, Y., Zhang, W.J., Jie, J.S., Meng, X.M., Fan, X., Lee, S.T.: Photoresponse properties of CdSe single-nanoribbon photodetectors. Adv. Funct. Mater 17, 1795–1800 (2007)CrossRefGoogle Scholar
  20. 20.
    Kuo, C.-H., Wu, J.-M., Lin, S.-J., Chang, W.-C.: High sensitivity of middle-wavelength infrared photodetectors based on an individual InSb nanowire. Nanoscale Res. Lett. 8, 327 (2013)CrossRefGoogle Scholar
  21. 21.
    Liang, Y., Liang, H., Xiao, X., Hark, S.: The epitaxial growth of ZnS nanowire arrays and their applications in UV-light detection. J. Mater. Chem. 22, 1199 (2012)CrossRefGoogle Scholar
  22. 22.
    Xie, X., Kwok, S.Y., Lu, Z., Liu, Y., Cao, Y., Luo, L., Zapien, J.A., Bello, I., Lee, C.S., Lee, S.T., Zhang, W.: Visible-NIR photodetectors based on CdTe nanoribbons. Nanoscale 4, 2914–2919 (2012)CrossRefGoogle Scholar
  23. 23.
    Fang, X., Xiong, S., Zhai, T., Bando, Y., Liao, M., Gautam, U.K., Koide, Y., Zhang, X., Qian, Y., Golberg, D.: High-performance blue/ultraviolet-light-sensitive ZnSe-nanobelt photodetectors. Adv. Mater. 21, 5016–5502 (2009)CrossRefGoogle Scholar
  24. 24.
    Jie, J.S., Zhang, W.J., Jiang, Y., Meng, X.M., Li, Y.Q., Lee, S.T.: Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett. 6, 1887–1892 (2006)CrossRefGoogle Scholar
  25. 25.
    Zhang, C., Wang, S., Yang, L., Liu, Y., Xu, T., Ning, Z., Zak, A., Zhang, Z., Tenne, R., Chen, Q.: High-performance photodetectors for visible and near-infrared lights based on individual WS2 nanotubes. Appl. Phys. Lett. 100, 243101 (2012)CrossRefGoogle Scholar
  26. 26.
    Binet, F., Duboz, J.Y., Rosencher, E., Scholz, F., Härle, V.: Mechanisms of recombination in GaN photodetectors. Appl. Phys. Lett. 8, 1202 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Microelectronics and InstrumentationFaculty of Science of MonastirMonastirTunisia

Personalised recommendations