A compact model for III–V nanowire electrostatics including band non-parabolicity

  • Mohit D. GaneriwalaEmail author
  • Francisco G. Ruiz
  • Enrique G. Marin
  • Nihar R. Mohapatra


The III–V materials have a highly non-parabolic band structure that significantly affects the MOS transistor electrostatics. The compact models used to simulate circuits involving III–V MOS transistors must account for this band structure non-parabolicity for accurate results. In this work, we propose a modification to the energy dispersion relation to include the band structure non-parabolicity in a way suitable for compact models. Unlike the available non-parabolic energy dispersion relation, the one proposed here is simple and includes the non-parabolicity in both confinement and transport directions. The proposed dispersion relation is then used to model the electrostatics of III–V nanowire transistors. The proposed model is scalable to a higher number of sub-bands and computationally efficient for circuit simulators. The model is also validated with the data from a 2D Poisson–Schrödinger solver for a wide range of nanowire dimensions, III–V channel materials, and found to be in excellent agreement with the simulation data.


Non-parabolic bandstructure Nanowire III–V Compact model Charge Surface potential Capacitance 



This work is supported by the Visvesvaraya Ph.D. scheme by MeitY, Government of India. Enrique G. Marin gratefully acknowledges Juan de la Cierva Incorporation IJCI-2017-32297 (MINECO/AEI).


  1. 1.
    Del Alamo, J.A.: Nanometre-scale electronics with III–V compound semiconductors. Nature 479(7373), 317 (2011). CrossRefGoogle Scholar
  2. 2.
    Kim, D.H., del Alamo, J.A., Lee, J.H., Seo, K.S.: In: IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest, pp. 767–770 (2005).
  3. 3.
    Hudait, M.K., Chau, R.: In: 2008 IEEE Compound Semiconductor Integrated Circuits Symposium, pp. 1–2 (2008).
  4. 4.
    Zhao, X., Heidelberger, C., Fitzgerald, E., Lu, W., Vardi, A., del Alamo, J.: In: Electron Devices Meeting (IEDM), 2017 IEEE International, pp. 17.2.1–17.2.4. IEEE (2017).
  5. 5.
    Ganeriwala, M.D., Ruiz, F.G., Marin, E.G., Mohapatra, N.R.: A compact charge and surface potential model for III–V cylindrical nanowire transistors. IEEE Trans. Electron Devices 66(1), 1 (2018)Google Scholar
  6. 6.
    Ganeriwala, M.D., Yadav, C., Ruiz, F.G., Marin, E.G., Chauhan, Y.S., Mohapatra, N.R.: Modeling of quantum confinement and capacitance in III–V gate-all-around 1-D transistors. IEEE Trans. Electron Devices 64(12), 4889 (2017). CrossRefGoogle Scholar
  7. 7.
    Dasgupta, A., Agarwal, A., Chauhan, Y.S.: Unified compact model for nanowire transistors including quantum effects and quasi-ballistic transport. IEEE Trans. Electron Devices 64(4), 1837 (2017). CrossRefGoogle Scholar
  8. 8.
    Yadav, C., Ganeriwala, M.D., Mohapatra, N.R., Agarwal, A., Chauhan, Y.S.: Compact modeling of gate capacitance in III–V channel quadruple-gate FETs. IEEE Trans. Nanotechnol. 16(4), 703 (2017)CrossRefGoogle Scholar
  9. 9.
    Wang, L., Asbeck, P.M., Taur, Y.: Self-consistent 1-D Schrödinger–Poisson solver for III–V heterostructures accounting for conduction band non-parabolicity. Solid-State Electron. 54(11), 1257 (2010)CrossRefGoogle Scholar
  10. 10.
    Godoy, A., Yang, Z., Ravaioli, U., Gámiz, F.: Effects of nonparabolic bands in quantum wires. J. Appl. Phys. 98(1), 013702 (2005)CrossRefGoogle Scholar
  11. 11.
    Jin, S., Fischetti, M.V., Tang, T.: Modeling of electron mobility in gated silicon nanowires at room temperature: surface roughness scattering, dielectric screening, and band nonparabolicity. J. Appl. Phys. 102(8), 083715 (2007)CrossRefGoogle Scholar
  12. 12.
    Liu, Y., Neophytou, N., Klimeck, G., Lundstrom, M.S.: Band-structure effects on the performance of III–V ultrathin-body SOI MOSFETs. IEEE Trans. Electron Devices 55(5), 1116 (2008)CrossRefGoogle Scholar
  13. 13.
    Marin, E.G., Ruiz, F.J.G., Tienda-Luna, I.M., Godoy, A., Gámiz, F.: Analytical gate capacitance modeling of III–V nanowire transistors. IEEE Trans. Electron Devices 60(5), 1590 (2013)CrossRefGoogle Scholar
  14. 14.
    Jungemann, C., Emunds, A., Engl, W.: Simulation of linear and nonlinear electron transport in homogeneous silicon inversion layers. Solid-State Electron. 36(11), 1529 (1993)CrossRefGoogle Scholar
  15. 15.
    Ruiz, F.J.G., Godoy, A., Gamiz, F., Sampedro, C., Donetti, L.: A comprehensive study of the corner effects in Pi-gate MOSFETs including quantum effects. IEEE Trans. Electron Devices 54(12), 3369 (2007). CrossRefGoogle Scholar
  16. 16.
    Marin, E.G., Ruiz, F.G., Godoy, A., Tienda-Luna, I.M., Gámiz, F.: Mobility and capacitance comparison in scaled InGaAs versus Si trigate MOSFETs. IEEE Electron Device Lett. 36(2), 114 (2015). CrossRefGoogle Scholar
  17. 17.
    Kim, J., Fischetti, M.V.: Electronic band structure calculations for biaxially strained Si, Ge, and III–V semiconductors. J. Appl. Phys. 108(1), 013710 (2010). CrossRefGoogle Scholar
  18. 18.
    Robertson, J., Falabretti, B.: Band offsets of high K gate oxides on III–V semiconductors. J. Appl. Phys. 100(1), 014111 (2006). CrossRefGoogle Scholar
  19. 19.
    O’Regan, T.P., Hurley, P.K.: Calculation of the capacitance–voltage characteristic of GaAs, In\(_{0.53}\)Ga\(_{0.47}\)As, and InAs metal–oxide–semiconductor structures. Appl. Phys. Lett. 99(16), 163502 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIndian Institute of Technology GandhinagarGandhinagarIndia
  2. 2.Department of ElectronicsUniversity of GranadaGranadaSpain
  3. 3.Department of Information EngineeringUniversity of PisaPisaItaly

Personalised recommendations