Advertisement

Journal of Computational Electronics

, Volume 18, Issue 4, pp 1469–1477 | Cite as

TCAD calibration and performance investigation of an ISFET-based TNT (explosive) sensor

  • Ayan Saikia
  • Ashish Raj
  • Rupam GoswamiEmail author
Article
  • 80 Downloads

Abstract

This article proposes a calibrated methodology as well as computational analyses for designing an explosive sensor for trinitrotoluene (TNT) detection using ion-sensitive field-effect transistor (ISFET) through technology computer-aided design (TCAD) tools. Although industrial device simulators are quite efficient in computing the various electrical parameters of a semiconductor device such as MOSFET, the absence of electrochemical models has posed a challenge to the investigation of ISFETs through TCAD simulations. A nanowire MOSFET has been calibrated using thirteen different concentrations of TNT from a fabricated sensor, and different sensitivities based on on current, threshold voltage and conductance have been proposed. The effect of gate oxide on the different sensitivities is also reported.

Keywords

ISFET TNT Sensitivity Sensor TCAD Simulation 

Notes

Acknowledgements

The authors acknowledge the Oysters Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India, for the technical support.

References

  1. 1.
    O’Mahony, A.M., Wang, J.: Nanomaterial-based electrochemical detection of explosives, a review of recent developments. Anal. Methods 10, 4296–4309 (2013).  https://doi.org/10.1039/c3ay40636a CrossRefGoogle Scholar
  2. 2.
    Grieshaber, D., MacKenzie, R., Vörös, J., Reimhult, E.: Electrochemical biosensors—sensor principles and architectures. Sensors (Basel) 8(3), 1400–1458 (2008).  https://doi.org/10.3390/s80314000 CrossRefGoogle Scholar
  3. 3.
    Zhang, W., Tang, Y., Shi, A., et al.: Recent developments in spectroscopic techniques for the detection of explosives. Materials (Basel) 11(8), 1364 (2018).  https://doi.org/10.3390/ma11081364 CrossRefGoogle Scholar
  4. 4.
    Senesac, L., Thundat, T.G.: Nanosensors for trace explosive detection. Mater. Today 11(3), 28–36 (2008).  https://doi.org/10.1016/S1369-7021(08)70017-8 CrossRefGoogle Scholar
  5. 5.
    Mikoliunaite, L., Geceviciute, M., Voronovic, J., Paklonskaitė, I., Ramanaviciene, J.B.A., Ramanavicius, A.: Carbon nanostructures for electrochemical sensors. In: IEEE 7th International Conference Nanomaterials: Application & Properties (NAP), Odessa, pp. 04NB28-1–04NB28-4 (2017).  https://doi.org/10.1109/nap.2017.8190340
  6. 6.
    Luo, T., Wang, H., Song, H., Christen, J.B.: CMOS-based on-chip electrochemical sensor. In: IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, Lausanne, pp. 336–339 (2014).  https://doi.org/10.1109/biocas.2014.6981731
  7. 7.
    Shankaran, D.R., et al.: A novel surface plasmon resonance immunosensor for 2,4,6-trinitrotoluene (TNT) based on indirect competitive immunoreactions, a promising approach for on-site landmine detection. IEEE Sensors J. 5(4), 616–621 (2005).  https://doi.org/10.1109/JSEN.2005.848150 CrossRefGoogle Scholar
  8. 8.
    Xiong, H., Li, J., Barrall, G.A.: Joint TNT and RDX detection via quadrupole resonance. IEEE Trans. Aerosp. Electron. Syst. 43(4), 1282–1293 (2007).  https://doi.org/10.1109/TAES.2007.4441739 CrossRefGoogle Scholar
  9. 9.
    Weng, C.S., Hashim, U., Liu, W.: Fabrication of silicon nitride ion sensitive field-effect transistor (ISFET) In: RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics, Langkawi, pp. 204–207 (2013).  https://doi.org/10.1109/rsm.2013.6706509
  10. 10.
    Hazarika, C., Dutta, A., Sharma, S.: Modelling of reference electrode for a SÌ3N4 gate pH ISFET. In: International Conference on Innovations in Electronics, Signal Processing and Communication (IESC), Shillong, pp. 149–154 (2017).  https://doi.org/10.1109/iespc.2017.8071882
  11. 11.
    Freeman, R., Gill, R., Willner, I.: Following a protein kinase activity using a field-effect transistor device. Chem. Commun. 33, 3450–3452 (2007).  https://doi.org/10.1039/B707677K CrossRefGoogle Scholar
  12. 12.
    Rodrigues, F., Boudinov, H.I.: Fabrication and characterization of a pH sensor. In: 32nd Symposium on Microelectronics Technology and Devices (SBMicro), Fortaleza, pp. 1–4 (2017).  https://doi.org/10.1109/sbmicro.2017.8112979
  13. 13.
    Dang, W., Manjakkal, L., Lorenzelli, L., Vinciguerra, V., Dahiya, R.: Stretchable pH sensing patch in a hybrid package. In: IEEE Sensors, Glasgow, pp. 1–3 (2017).  https://doi.org/10.1109/icsens.2017.8234297
  14. 14.
    Lee, J.H., et al.: Effect of polysilicon gate on the flatband voltage shift and mobility degradation for ALD-Al/sub 2/O/sub 3/gate dielectric. In: International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138), San Francisco, CA, USA, pp. 645–648 (2000).  https://doi.org/10.1109/iedm.2000.904402
  15. 15.
    Kim, T.H., Lee, B.Y., Jaworski, J., Yokoyama, K., Chung, W.-J., Wang, E., Hong, S., Majumdar, A., Lee, S.-W.: Selective and sensitive TNT sensors using biomimetic polydiacetylene-coated CNT-FETs. ACS Nano 5(4), 2824–2830 (2011).  https://doi.org/10.1021/nn103324p CrossRefGoogle Scholar
  16. 16.
    Zang, F., Gerasopoulos, K., Fan, X.Z., Brown, A.D., Culver, J.N., Ghodssi, R.: An electrochemical sensor for selective TNT sensing based on Tobacco mosaic virus-like particle binding agents. Chem. Commun. 50(85), 12977–12980 (2014).  https://doi.org/10.1039/C4CC06735E CrossRefGoogle Scholar
  17. 17.
    Masoumi, S., Hajghassem, H., Erfanian, A., Rad, A.M.: Design and manufacture of TNT explosives detector sensors based on CNTFET. Sens. Rev. 36(4), 414–420 (2016).  https://doi.org/10.1108/SR-01-2016-0014 CrossRefGoogle Scholar
  18. 18.
    Wang, H., Chen, S., Gao, A., Wang, Y., Li, T.: Detection of TNT in sulfuric acid solution by SiNWs-FET based sensor. In: 2018 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), Roma, pp. 1–4 (2018).  https://doi.org/10.1109/dtip.2018.8394241
  19. 19.
    Sharon, E., Freeman, R., Willner, I.: Detection of explosives using field-effect transistors. Electroanalysis 21, 2185–2189 (2009).  https://doi.org/10.1002/elan.200900271 CrossRefGoogle Scholar
  20. 20.
    Engel, Y., Elnathan, R., Pevzner, A., Davidi, G., Flaxer, E., Patolsky, F.: Supersensitive detection of explosives by silicon nanowire arrays. Angew. Chem. Int. Ed. 49, 6830–6835 (2010).  https://doi.org/10.1002/anie.201000847 CrossRefGoogle Scholar
  21. 21.
    Lee, C.S., Kim, S.K., Kim, M.: Ion-sensitive field-effect transistor for biological sensing. Sensors (Basel) 9(9), 7111–7131 (2009).  https://doi.org/10.3390/s90907111 CrossRefGoogle Scholar
  22. 22.
    Sentaurus Device User, Synopsys p. 2009 (2009)Google Scholar
  23. 23.
    Tsividis, Y.: Operation and Modelling of the MOS Transistor, 2nd edn, pp. 50–88. Oxford University Press, New York (1999)Google Scholar
  24. 24.
    Ajay, N.R., Saxena, M., Gupta, M.: Investigation of dielectric modulated (DM) double gate (DG) junctionless MOSFETs for application as a biosensors. Superlattices Microstruct. 85, 557–572 (2015).  https://doi.org/10.1016/j.spmi.2015.04.040 CrossRefGoogle Scholar
  25. 25.
    VanderGaast, B.W., McFee, J.E., Russell, K.L., Faust, A.A.: Design and validation of inert homemade explosive simulants for ground penetrating radar. Proc. SPIE (2015).  https://doi.org/10.1117/12.2175586 CrossRefGoogle Scholar
  26. 26.
    Hasan, M., Huq, MdF, Mahmood, Z.H.: A review on electronic and optical properties of silicon nanowire and its different growth techniques. SpringerPlus 2(1), 151 (2013).  https://doi.org/10.1186/2193-1801-2-151 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringBirla Institute of Technology and Science PilaniPilaniIndia

Personalised recommendations