Theoretical investigation of elastic constants and related properties of compressed PbO2

  • Farida Bounab
  • Nadir BouarissaEmail author
  • Abdallah Merrouche
  • Abdelfateh Benmakhlouf
  • Salah Daoud
  • Nacer-Eddine Chelali


This work aims to study the structural and elastic properties of tetragonal lead dioxide (β-PbO2) material using first-principles calculations. Features such as lattice parameters, bulk modulus and its first pressure derivative, elastic constants, mechanical parameters, sound velocities, Debye temperature and melting temperature have been investigated, and their dependence on pressure in the range 0–1 GPa has been analyzed and discussed. Upon compression, the stiffness of the material of interest is found to become larger as compared to that at zero pressure. Moreover, its tetragonal structure fulfills the mechanical stability criteria in all studied pressure range. Besides, the analysis of Pugh’s ratio shows that PbO2 behaves in a ductile manner.


Lead dioxide (PbO2) material Structural properties Elastic properties Pressure Mechanical stability 



  1. 1.
    Zhuravlev, Y.N., Korabel’nikov, D.V.: A first principles study of the mechanical, electronic, and vibrational properties of lead oxide. Phys. Solid State 59, 2296 (2017)CrossRefGoogle Scholar
  2. 2.
    Chen, Z., Yu, Q., Liao, D., Guo, Z., Wu, J.: Influence of nano-CeO2 on coating structure and properties of electrodeposited Al/α-PbO2/β-PbO2. Trans. Nonferr. Met. Soc. China 23, 1382 (2013)CrossRefGoogle Scholar
  3. 3.
    Greenwood, N.N., Earnshaw, A.: Chemistry of the Elements, 2nd edn. Butter Worth-Heinemann, p. 386 ISBN:0-08-037941-9 (1997)Google Scholar
  4. 4.
    Kopczyński, K., Kolanowski, L., Baraniak, M., Lota, K., Sierczyńska, A., Lota, G.: Highly amorphous PbO2 as an electrode in hybrid electrochemical capacitors. Curr. Appl. Phys. 17, 66 (2017)CrossRefGoogle Scholar
  5. 5.
    He, Z., Hayat, M.D., Huang, S., Wang, X., Cao, P.: PbO2 electrodes prepared by pulse reverse electrodeposition and their application in benzoic acid degradation. J. Electroanal. Chem. 812, 74 (2018)CrossRefGoogle Scholar
  6. 6.
    Quiroz, M.A., Martίnez-Huitle, C.A., Meas-Vong, Y., Bustos, E., Cerro-Lopez, M.: Effect of lead dioxide high dispersion on titania nanotubes electrodes on the enhanced electrooxidation of aqueous p-nitrophenol and methyl red: an electrode comparative study. J. Electroanal. Chem. 807, 261 (2017)CrossRefGoogle Scholar
  7. 7.
    Shih, Y.-J., Huang, Y.-H., Huang, C.P.: Oxidation of ammonia in dilute aqueous solutions over graphite-supported α- and β-lead dioxide electrodes (PbO2@G). Electrochim. Acta. 257, 444 (2017)CrossRefGoogle Scholar
  8. 8.
    Simon, M., Ford, R.A., Franklin, A.R., Grabowski, S.P., Menser, B., Much, G., Nascetti, A., Overdick, M., Powell, M.J., Wiechert, D.U.: Analysis of lead oxide (PbO) layers for direct conversion X-ray detection. IEEE Trans. Nucl. Sci. 52, 2035 (2005)CrossRefGoogle Scholar
  9. 9.
    Madbouly, A.M., Atta, E.R.: Comparative study between lead oxide and lead nitrate polymer as gamma-radiation shielding materials. J. Environ. Prot. 7, 268 (2016)CrossRefGoogle Scholar
  10. 10.
    Müller, D., Knoll, C., Artner, W., Harasek, M., Gierl-Mayer, C., Welch, J.M., Werner, A., Weinberger, P.: Combining in situ X-ray diffraction with thermogravimetry and differential scanning calorimetry—an investigation of Co3O4, MnO2 and PbO2 for thermochemical energy storage. Sol. Energy 153, 11 (2017)CrossRefGoogle Scholar
  11. 11.
    Ackland, G.J.: High-pressure phases of group IV and III–V semiconductors. Rep. Prog. Phys. 64, 483 (2001). and references therein CrossRefGoogle Scholar
  12. 12.
    Olego, D., Cardona, M., Muller, H.: Photoluminescence in heavily doped GaAs. II. Hydrostatic pressure dependence. Phys. Rev. B 22, 894 (1980)CrossRefGoogle Scholar
  13. 13.
    Jayaraman, A.: Diamond anvil cell and high-pressure physical investigations. Rev. Mod. Phys. 55, 65 (1983)CrossRefGoogle Scholar
  14. 14.
    Weinstein, B.A., Zallen, R.: Pressure-Raman effects in covalent and molecular solids. Top. Appl. Phys. 54, 463 (1984)CrossRefGoogle Scholar
  15. 15.
    Prins, A.D., Spain, I.L., Dunstan, D.J.: Diamond anvil cell high-pressure techniques for semiconductor research. Semicond. Sci. Technol. 4, 237 (1989)CrossRefGoogle Scholar
  16. 16.
    Itié, J.P., San-Miguel, A., Polian, A.: Contribution of XAFS to the understanding of material behavior under high pressure. Jpn. J. Appl. Phys. 32, 711 (1993)CrossRefGoogle Scholar
  17. 17.
    Car, R., Parrinello, M.: Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471 (1985)CrossRefGoogle Scholar
  18. 18.
    Saib, S., Bouarissa, N.: High-pressure band parameters for GaAs: first principles calculations. Solid-State Electron. 50, 763 (2006)CrossRefGoogle Scholar
  19. 19.
    Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.D.: Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992)CrossRefGoogle Scholar
  20. 20.
    Saib, S., Bouarissa, N.: Structural parameters and transition pressures of ZnO: ab initio calculations. Phys. Stat. Sol. (b) 244, 1063 (2007)CrossRefGoogle Scholar
  21. 21.
    Hemley, R.J., Ashcroft, N.W.: The revealing role of pressure in the condensed matter sciences. Phys. Today 51, 26 (1998)CrossRefGoogle Scholar
  22. 22.
    Bouarissa, N.: Phonons and related crystal properties in indium phosphide under pressure. Phys. B 406, 2583 (2011)CrossRefGoogle Scholar
  23. 23.
    Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter. 14, 2717 (2002)CrossRefGoogle Scholar
  24. 24.
    Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. 41, 7892 (1990)CrossRefGoogle Scholar
  25. 25.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  26. 26.
    Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Fischer, T.H., Almlof, J.: General methods for geometry and wave function optimization. J. Phys. Chem. 96, 9768 (1992)CrossRefGoogle Scholar
  28. 28.
    Liu, L.-G.: The high-pressure phase transformations of PbO2: an in situ X-ray diffraction study. Phys. Chem. Miner. 6, 187 (1980)CrossRefGoogle Scholar
  29. 29.
    de Jong, M., Chen, W., Angsten, T., Jain, A., Notestine, R., Gamst, A., Sluiter, M., Ande, C.K., van der Zwaag, S., Plata, J.J., Toher, C., Curtarolo, S., Ceder, G., Persson, K.A., Asta, M.: Charting the complete elastic properties of inorganic crystalline compounds. Sci Data 2, 150009 (2015). CrossRefGoogle Scholar
  30. 30.
    Bouarissa, N.: Elastic constants and acoustical phonon properties of GaAsxSb1−x. Mater. Chem. Phys. 100, 41 (2006)CrossRefGoogle Scholar
  31. 31.
    Daoud, S., Bioud, N., Bouarissa, N.: Structural phase transition, elastic and thermal properties of boron arsenide: pressure-induced effects. Mater. Sci. Semicond. Process. 31, 124 (2015)CrossRefGoogle Scholar
  32. 32.
    Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65, 349 (1952)CrossRefGoogle Scholar
  33. 33.
    Liu, L., Wu, X., Wang, R., Hu, Z., Jiang, Y., Liu, D.: First principles study on structure stability and mechanical properties of YNi2B2C and LuNi2B2C under pressure. Crystals 7, 173 (2017)CrossRefGoogle Scholar
  34. 34.
    Gueddim, A., Bouarissa, N., Villesuzanne, A.: Pressure dependence of elastic constants and related parameters for rocksalt MgO. Comput. Mater. Sci. 48, 490 (2010)CrossRefGoogle Scholar
  35. 35.
    Hu, T., Han, Y., Dong, J.: Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains. Nanotechnology 25, 455703 (2014)CrossRefGoogle Scholar
  36. 36.
    Fei, R., Yang, L.: Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14, 2884 (2014)CrossRefGoogle Scholar
  37. 37.
    Peng, X., Wei, Q., Copple, A.: Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B 90, 085402 (2014)CrossRefGoogle Scholar
  38. 38.
    Bouarissa, N.: The effect of hydrostatic pressure on the electronic and optical properties of InP. Solid-State Electron. 44, 2193 (2000)CrossRefGoogle Scholar
  39. 39.
    Bouarissa, N.: Pressure dependence of optoelectronic properties of GaN in the zinc-blende structure. Mater. Chem. Phys. 73, 51 (2002)CrossRefGoogle Scholar
  40. 40.
    Liu, Z.J., Sun, X.W., Zhang, C.R., Hu, J.B., Song, T., Qi, J.H.: Elastic tensor and thermodynamic property of magnesium silicate perovskite from first-principles calculations. Chin. J. Chem. Phys. 24, 703 (2011)CrossRefGoogle Scholar
  41. 41.
    Bouarissa, N.: Compositional dependence of the elastic constants and the Poisson ratio of GaxIn1−xSb. Mater. Sci. Eng. B 100, 280 (2003)CrossRefGoogle Scholar
  42. 42.
    Pugh, S.F.: XCII Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (1954)CrossRefGoogle Scholar
  43. 43.
    Lüthi, B.: Physical Acoustics in the Solid State. Springer, Berlin (2005)CrossRefGoogle Scholar
  44. 44.
    Bioud, N., Kassali, K., Bouarissa, N.: Thermodynamic properties of compressed CuX (X = Cl, Br) compounds: ab initio study. J. Electron. Mater. 46, 2521 (2017)CrossRefGoogle Scholar
  45. 45.
    Alouani, M., Albers, R.C., Methfessel, M.: Calculated elastic constants and structural properties of Mo and MoSi2. Phys. Rev. B 43, 6500 (1991)CrossRefGoogle Scholar
  46. 46.
    Rahaman, M.Z., Rahman, M.A.: Novel 122-type Ir-based superconductors BaIr2Mi2 (Mi = P and As): a density functional study. J. Alloys Compd. 711, 327 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Farida Bounab
    • 1
  • Nadir Bouarissa
    • 2
    Email author
  • Abdallah Merrouche
    • 3
  • Abdelfateh Benmakhlouf
    • 4
  • Salah Daoud
    • 5
  • Nacer-Eddine Chelali
    • 5
  1. 1.Faculté des Sciences et de la TechnologieUniversité Mohamed Elbachir El Ibrahimi de Bordj Bou ArreridjBordj Bou ArreridjAlgeria
  2. 2.Laboratory of Materials Physics and its ApplicationsUniversity of M’silaM’silaAlgeria
  3. 3.Laboratoire des Matériaux inorganiquesUniversité de M’silaM’silaAlgeria
  4. 4.Department of Mechanical Engineering, Faculty of TechnologyUniversity of Amar Telidji-LaghouatLaghouatAlgeria
  5. 5.Laboratoire Matériaux et Systèmes Electroniques (LMSE)Université Mohamed Elbachir El Ibrahimi de Bordj Bou ArreridjBordj Bou ArreridjAlgeria

Personalised recommendations