Single-event radiation performance analysis of junction and junctionless FET-based low-noise amplifiers

  • P. RajendiranEmail author
  • R. Srinivasan


The aim of this study is to analyze the single-event radiation performance of the junction (conventional bulk planar MOSFET) and junctionless FET (bulk planar junctionless device)-based cascoded narrow-band radio frequency (RF) low-noise amplifiers (LNAs). Two LNAs, one based on the conventional MOSFET and another based on the junctionless FET, are investigated for their single-event strike performance using numerical device simulations. The transient simulation results are interpreted in both the time and frequency domains. The collected charge (Qc) is used as a performance metric in the time domain, and the spurious frequencies introduced due to the radiation strike are analyzed in the frequency domain using spectrograms. It is found that, for a given dose, Qc is higher in the junctionless FET LNA. By postprocessing the single event transient (SET) results using Fast Fourier transform (FFT) and spectrogram operations, it is found that the range of the SET spectrum is wider in the junctionless FET LNA.


BPJLT Collected charge Junctionless Single-event effects Single-event transient Heavy ions LNA Source degeneration inductor 



  1. 1.
    Jagannathan, B., Chidambarrao, D., Pekarik, J.: 300 GHz transistor performance in production CMOS technologies. In: 64th Device Research Conference, pp 199–200 (2006)Google Scholar
  2. 2.
    Dambrine, G., Raynaud, C., Lederer, D., Dehan, M., Rozeau, O., et al.: What are the limiting parameters of deep-submicron MOSFET for high frequency applications. IEEE Electron. Dev. Lett. 24, 189–191 (2003)CrossRefGoogle Scholar
  3. 3.
    Lee, S., Jagannathan, B., Narasimha, S., Chou, A., Zamdmer, N., Johnson, J., Williams, R., 2050 Wagner, L., Kim, J., Plouchart, J.-O., Pekarik, J., Springer, S., Freeman, G.: Record RF 2051 performance of 45 nm SOI CMOS technology. In: IEDM Digest of Technical Papers, pp. 255–258 (2007)Google Scholar
  4. 4.
    Hossain, M., Chowdhury, M.H.: Comprehensive doping scheme for MOSFETs in ultra-low-power subthreshold circuit design. Microelectron. J. 52, 73–79 (2016)CrossRefGoogle Scholar
  5. 5.
    Guegan, G., Souil, D., Deleonibus, S., Tedesco, S., Laviron, C., Previtali, P., Nier, M.E.: Channel engineering study for 50 nm P-channel MOSFET. In: Proceeding of the 32nd European on Solid-State Device Research Conference 2002, pp. 119–122, 2002Google Scholar
  6. 6.
    Colinge, J.P., Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, P., Razavi, B., O’Neill, A., Blake, M., White, A.M.Kelleher, McCarthy, B., Murphy, R.: Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)CrossRefGoogle Scholar
  7. 7.
    Tai, C.H., Lin, J.T., Eng, Y.C., Lin, P.H.: A novel high-performance junctionless vertical MOSFET produced on bulk-Si wafer. In: Proceedings of the 10th IEEE ICSICT, pp. 108–110 (2010)Google Scholar
  8. 8.
    Sachid, A.B., Francis, R., Baghini, M.S., Sharma, D.K., Bach, K.-H., Mahnkopf, R., Rao, V.R.: Sub-20 nm gate length FinFET design: can high-κ spacers make a difference? In: IEDM Technical Digest, pp. 697–700 (2008)Google Scholar
  9. 9.
    Tekleab, D.: Device performance of silicon nanotube field effect transistor. IEEE Electron Device Lett. 35(5), 506–508 (2014)CrossRefGoogle Scholar
  10. 10.
    Trevisoli, R.D., et al.: Surface-potential-based drain current analytical model for triple-gate junctionless nanowire transistors. IEEE Trans. Electron Devices 59, 3510–3518 (2012)CrossRefGoogle Scholar
  11. 11.
    Gundapaneni, S., Ganguly, S., Kottantharayil, A.: Bulk planar junctionless transistor (BPJLT): an attractive device alternative for scaling. IEEE Electron Dev. Lett. 32(03), 261–263 (2011)CrossRefGoogle Scholar
  12. 12.
    Bagatin, M., Gerardin S., Ionizing Radiation Effects in Electronics: From Memories to Imagers, vol. 50. CRC Press, Boca Raton (2015)CrossRefGoogle Scholar
  13. 13.
    Marshall, P.W., Dale, C.J., LaBel, K.A.: Space radiation effects in high performance fiber optic data links for satellite data management. IEEE Trans. Nucl. Sci. 43(2), 645–653 (1996)CrossRefGoogle Scholar
  14. 14.
    Oldham, T.R., Friendlich, M.R., Sanders, A.B., Seidleck, C.M., Kim, H.S., Berg, M.D., LaBel, K.A.: TID and SEE response of advanced Samsung and Micron 4G NAND flash memories for the NASA MMS mission. In Proceedings of the IEEE Radiation Effects Data Workshop, pp. 114–122 (2009)Google Scholar
  15. 15.
    Casey, M.C., Amusan, O.A., Nation, S., Balasubramanian, A., Bhuva, B.L., Alles, M.L., Massengill, L.W., McMorrow, D., Melinger, J.S., Narasimham, B.: Single-event effects on combinational logic circuits operating at ultra-low power. IEEE Trans. Nucl. Sci. 55(6), 3342–3346 (2008)CrossRefGoogle Scholar
  16. 16.
    Chatterjee, I., et al.: Impact of technology scaling on SRAM soft error rates. IEEE Trans. Nucl. Sci. 61(6), 3512–3518 (2014)CrossRefGoogle Scholar
  17. 17.
    Martinie, S., Autran, J.L., Uznanski, S., Roche, P., Gasiot, G., Munteanu, D., Sauze, S.: Alpha-particle induced soft-error rate in CMOS 130 nm SRAM. IEEE Trans. Nucl. Sci. 58(3), 1086–1092 (2011)CrossRefGoogle Scholar
  18. 18.
    Ruckerbauer, F.X., et al.: Soft error rates in 65 nm SRAMs-Analysis of new phenomena. In: Proceedings of the IEEE international on-line testing symposium, pp. 203–204 (2007)Google Scholar
  19. 19.
    Loveless, T.D., Massengill, L.W., Holman, W.T., Bhuva, B.L., McMorrow, D., Warner, J.H.: A generalized linear model for single event transient propagation in phase-locked loops. IEEE Trans. Nucl. Sci. 57(5), 2933–2947 (2010)CrossRefGoogle Scholar
  20. 20.
    Chen, W., Varanasi, N., Pouget, V., Barnaby, H.J., Vermeire, B., Adell, P.C., Copani, T., Fouillat, P.: Impact of VCO topology on SET induced frequency response. IEEE Trans. Nucl. Sci. 54(6), 2500–2505 (2007)CrossRefGoogle Scholar
  21. 21.
    Golio, M.: RF and Microwave Semiconductor Device Handbook. CRC Press, Boca Raton (2002)Google Scholar
  22. 22.
    Nguyen, T.K., Kim, C.H., Ihm, G.J., Yang, M.S., Lee, S.G.: CMOS low-noise amplifier design optimization techniques. IEEE Trans. Microw. Theory Tech. 52(5), 1433–1442 (2004)CrossRefGoogle Scholar
  23. 23.
    Lourenco, N.E., et al.: An investigation of single-event effect modeling techniques for a SiGe RF low-noise amplifier. IEEE Trans. Nucl. Sci. 63(1), 273–280 (2016)CrossRefGoogle Scholar
  24. 24.
    Mossawir, B.: A TID and SEE radiation-hardened wideband low-noise amplifier. IEEE Trans. Nucl. Sci. 53(6), 3439–3448 (2006)CrossRefGoogle Scholar
  25. 25.
    Rajendiran, P., Srinivasan, R.: Heavy ion impact on narrow band cascoded low noise amplifier. Microelectron. Reliab. 91(Part-1), 31–37 (2018)CrossRefGoogle Scholar
  26. 26.
    Nagy, R., Burenkov, A., Lorenz, J.: Numerical evaluation of the ITRS transistor scaling. J. Comput. Electron. 14, 192–202 (2015)CrossRefGoogle Scholar
  27. 27.
    Cho, H.-J., et al.: Bulk planar 20 nm high-k/metal gate CMOS technology platform for low power and high performance applications. In: International Electron Devices Meeting, pp. 15.1.1–15.1.4 (2011)Google Scholar
  28. 28.
    Lee, T.H.: The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge Univ. Press, Cambridge (1998)Google Scholar
  29. 29.
    Tsui, H.-Y., Jack, L.: SPICE simulation and tradeoffs of CMOS LNA performance with source-degeneration inductor. IEEE Trans. Process. 47(1), 62–65 (2000)Google Scholar
  30. 30.
    Chitra, P., Ravi, S., Ramakrishnan, V.N.: A soft error study on tri-gate based FinFET and junctionless FinFET 6T SRAM cell—a comparison. TELKOMNIKA Yogyyakarta 14(4), 1299–1306 (2016). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Information TechnologySSN College of EngineeringChennaiIndia

Personalised recommendations