Advertisement

Journal of Computational Electronics

, Volume 18, Issue 4, pp 1478–1489 | Cite as

Optimization of the area efficiency and robustness of a QCA-based reversible full adder

  • Prashant Kumar
  • Sangeeta SinghEmail author
Article
  • 71 Downloads

Abstract

Recently, quantum dot cellular automata (QCAs) have evolved as the most promising candidate to overcome the fundamental nanoscale limitations of present complementary metal–oxide–semiconductor (CMOS) technology. Owing to their quasiadiabatic switching, QCAs have huge potential for the design of THz-frequency logic circuits and ultralow-power digital circuits with extremely high device density. The aim of the work presented herein is to maximize the benefits of a QCA-based circuit design by deploying reversible computing logic. A highly efficient reversible QCA-based full adder is proposed by using a three-input and five-input majority gate architecture. The proposed design demonstrates significant improvements in circuit complexity, area efficiency, and quantum cost while retaining performance in terms of latency and area usage. Coplanar crossovers are properly realized using 180° clock zones. The performance of the proposed design surpasses that of recent literature designs, with a 25% reduction in the circuit complexity, a 28% saving in the total area, a 24.57% decrease in the cell area, and an approximately 1/4 reduction in the quantum cost. To verify the feasibility of the proposed design, its thermal robustness is analyzed and hazard analysis is also performed. The proposed full adder is further employed to realize reversible ripple-carry adders (RCAs) of variable size. The proposed RCAs also show significant improvements in terms of the mentioned performance parameters.

Keywords

Quantum dot cellular automata (sQCA) Reversible logic Majority gate Coplanar crossover Ripple-carry adders (RCAs) Quasiadiabatic switching 

Notes

References

  1. 1.
    Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)CrossRefGoogle Scholar
  2. 2.
    Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. IEEE Proc. 85(4), 541–557 (1997)CrossRefGoogle Scholar
  3. 3.
    Thapliyal, H., Ranganathan, N.: Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans. Nanotechnol. 9(1), 62–69 (2010)CrossRefGoogle Scholar
  4. 4.
    Thapliyal, H., Ranganathan, N., Kotiyal, S.: Design of testable reversible sequential circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(7), 1201–1209 (2013)CrossRefGoogle Scholar
  5. 5.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Abdullah-Al-Shafi, M., Shifatul, M., Newaz, A.: A review on reversible logic gates and its QCA implementation. Int. J. Comput. Appl. 128(2), 27–34 (2015)Google Scholar
  8. 8.
    Ma, X., Huang, J., Metra, C., Lombardi, F.: Reversible gates and testability of one dimensional arrays of molecular QCA. J. Electron. Test. 24(1–3), 297–311 (2008)CrossRefGoogle Scholar
  9. 9.
    Shah, N.A., Khanday, F.A., Iqbal, J.: Quantum-dot cellular automata (QCA) design of multi-function reversible logic gate. In: Communications in Information Science and Management Engineering, vol. 2, no. 4 (2012)Google Scholar
  10. 10.
    Hashemi, S., Navi, K.: Reversible multiplexer design in quantum-dot cellular automata. Quantum Matter 3(6), 523–528 (2014)CrossRefGoogle Scholar
  11. 11.
    Kianpour, M., Sabbaghi-Nadooshan, R.: Novel 8-bit reversible full adder/subtractor using a QCA reversible gate. J. Comput. Electron. 16(2), 459–472 (2017)CrossRefGoogle Scholar
  12. 12.
    Taherkhani, E., Moaiyeri, M.H., Angizi, S.: Design of an ultra-efficient reversible full adder-subtractor in quantum-dot cellular automata. Optik 142, 557–563 (2017)CrossRefGoogle Scholar
  13. 13.
    Hashemi, S., Navi, K.: Designing quantum-dot cellular automata circuits using a robust one layer crossover scheme. J. Eng. 2014(3), 93–97 (2014)Google Scholar
  14. 14.
    Kim, K., Wu, K., Karri, R.: The robust QCA adder designs using composable QCA building blocks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(1), 176–183 (2007)CrossRefGoogle Scholar
  15. 15.
    Kim, K., Wu, K., K., Karri, R., R.: 2005, Towards designing robust QCA architectures in the presence of sneak noise paths. In: Proceedings of the IEEE Computer Society conference on Design, Automation and Test in Europe, vol. 2, pp. 1214–1219 (2005)Google Scholar
  16. 16.
    Hänninen, I., Takala, J.: Binary adders on quantum-dot cellular automata. J. Signal Process. Syst. 58(1), 87–103 (2010)CrossRefGoogle Scholar
  17. 17.
    Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)CrossRefGoogle Scholar
  18. 18.
    Devadoss, R., Paul, K., Balakrishnan, M.: Coplanar QCA crossovers. Electron. Lett. 45(24), 1234–1235 (2009)CrossRefGoogle Scholar
  19. 19.
    Tougaw, D., Khatun, M.: A scalable signal distribution network for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 12(2), 215–224 (2013)CrossRefGoogle Scholar
  20. 20.
    Shin, S.H., Jeon, J.C., Yoo, K.Y.: Wire-crossing technique on quantum-dot cellular automata. In: The 2nd International Conference on Next Generation Computer and Information Technology (NGCIT2013), vol. 27, pp. 52–57 (2013)Google Scholar
  21. 21.
    Toffoli, T.: Reversible computing. In: International Colloquium on Automata, Languages, and Programming, pp. 632–644. Springer, Berlin (1980)Google Scholar
  22. 22.
    Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32(6), 3266 (1985)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21(3–4), 219–253 (1982)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Thapliyal, H., Srinivas, M.B., Arabnia, H.R.: Reversible logic synthesis of half, full and parallel subtractors. In: ESA, pp. 165–181 (2005)Google Scholar
  25. 25.
    Kunalan, D., Cheong, C.L., Chau, C.F., Ghazali, A.B.: Design of a 4-bit adder using reversible logic in quantum-dot cellular automata (QCA). In: IEEE International Conference on Semiconductor Electronics (ICSE2014), pp. 60–63 (2014)Google Scholar
  26. 26.
    Mohammadi, Z., Mohammadi, M.: Implementing a one-bit reversible full adder using quantum-dot cellular automata. Quantum Inf. Process. 13(9), 2127–2147 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sasamal, T.N., Singh, A.K., Mohan, A.: Design of cost-efficient QCA reversible circuits via clock-zone-based crossover. Int. J. Theor. Phys. 57(10), 3127–3140 (2018)CrossRefGoogle Scholar
  28. 28.
    Hashemi, S., Azghadi, M.R., Navi, K.: Design and analysis of efficient QCA reversible adders. J. Supercomput. 75(4), 1–20 (2018)Google Scholar
  29. 29.
    Azghadi, M.R., Kavehie, O., Navi, K.: A novel design for quantum-dot cellular automata cells and full adders (2012). arXiv preprint. arXiv:1204.2048
  30. 30.
    Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)CrossRefGoogle Scholar
  31. 31.
    Babu, H.M.H., Islam, M.R., Chowdhury, A.R., Chowdhury, S.M.A.: On the realization of reversible full-adder circuit. In: International Conference on Computer and Information Technology, Dhaka, Bangladesh, vol. 2, pp. 880–883 (2003)Google Scholar
  32. 32.
    Islam, S., Islam, M.R.: Minimization of reversible adder circuits. Asian J. Inf. Technol. 4(12), 1146–1151 (2005)MathSciNetGoogle Scholar
  33. 33.
    Haghparast, M., Navi, K.: A novel reversible BCD adder for nanotechnology based systems. Am. J. Appl. Sci. 5(3), 282–288 (2008)CrossRefGoogle Scholar
  34. 34.
    AnanthaLakshmi, A.V., Sudha, G.F.: Design of a novel reversible full adder and reversible full subtractor. In: Advances in Computing and Information Technology, pp. 623–632. Springer, Berlin (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Microelectronics and VLSI Lab.National Institute of TechnologyPatnaIndia

Personalised recommendations