Advertisement

A full 3D model of the modulation efficiency of a submicron complementary metal–oxide–semiconductor (CMOS)-compatible interleaved-junction optical phase shifter

  • Abdurrahman Javid ShaikhEmail author
  • Fauzi Packeer
  • Mirza Muhammad Ali Baig
  • Othman Sidek
Article

Abstract

The optimization of the performance of optical modulators requires reasonably accurate predictive models for key figures of merit. The interleaved PN junction topology offers the maximum mode/junction overlap and enables the most efficient modulators for depletion-mode operation. Due to the structure of such devices, accurate modeling must be fully three dimensional (3D), representing a nontrivial computational problem. A rigorous 3D model for the modulation efficiency of a silicon-on-insulator interleaved-junction optical phase modulator with submicron dimensions is presented herein. The drift–diffusion and Poisson’s equations are solved on a 3D finite-element mesh, while Maxwell’s equations are solved using the finite-difference time-domain method on 3D Yee cells. The entire modeling process is presented in detail, and all the coefficients required by the model are presented. The model validation suggests < 10% root-mean-square (RMS) error.

Keywords

Optical modulators Interleaved PN junctions Optical phase shifters 3D optoelectronic modeling Silicon-on-insulator (SOI) Silicon photonics Integrated optics 

Notes

Funding

This work is partially supported by Universiti Sains Malaysia Research University Short-Term Grant No. 304/PELECT/6315067.

References

  1. 1.
    Priye, V., Malviya, N., Mickelson, A.: Analytical predictions for nonlinear optical processes in silicon slot waveguides. J. Comput. Electron. 17(2), 857–865 (2018).  https://doi.org/10.1007/s10825-018-1150-8 CrossRefGoogle Scholar
  2. 2.
    Rakshit, J.K., Roy, J.N.: Design of all-optical universal shift register using nonlinear microring resonators. J. Comput. Electron. 15(4), 1450–1461 (2016).  https://doi.org/10.1007/s10825-016-0897-z CrossRefGoogle Scholar
  3. 3.
    Frigerio, J., Vakarin, V., Chaisakul, P., Ferretto, M., Chrastina, D., Le Roux, X., Vivien, L., Isella, G., Marris-Morini, D.: Giant electro-optic effect in Ge/SiGe coupled quantum wells. Sci. Rep. 5, 15398 (2015).  https://doi.org/10.1038/srep15398 CrossRefGoogle Scholar
  4. 4.
    Soref, R., Bennett, B.: Electrooptical effects in silicon. IEEE J. Quantum Electron. 23(1), 123–129 (1987)CrossRefGoogle Scholar
  5. 5.
    Reed Graham, T., Mashanovich Goran, Z., Gardes Frederic, Y., Nedeljkovic, M., Hu, Y., Thomson David, J., Li, K., Wilson Peter, R., Chen, S.-W., Hsu Shawn, S.: Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics 3(4–5), 229 (2014)Google Scholar
  6. 6.
    Reed, G.T., Mashanovich, G., Gardes, F.Y., Thomson, D.J.: Silicon optical modulators. Nat. Photon. 4(8), 518–526 (2010)CrossRefGoogle Scholar
  7. 7.
    Li, Z.-Y., Xu, D.-X., McKinnon, W.R., Janz, S., Schmid, J.H., Cheben, P., Yu, J.-Z.: Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions. Opt. Express 17(18), 15947–15958 (2009).  https://doi.org/10.1364/oe.17.015947 CrossRefGoogle Scholar
  8. 8.
    Perez-Galacho, D., Marris-Morini, D., Cassan, E., Vivien, L.: Modeling of PN interleaved phase shifters for high speed silicon modulators. Silicon Photonics Photonic Integr Circuits IV 9133, 913312–913317 (2014)CrossRefGoogle Scholar
  9. 9.
    Perez-Galacho, D., Marris-Morini, D., Stoffer, R., Cassan, E., Baudot, C., Korthorst, T., Boeuf, F., Vivien, L.: Simplified model enabling optimization of silicon modulators. In: SPIE Optics + Optoelectronics 2017, p. 6. SPIEGoogle Scholar
  10. 10.
    Pérez-Galacho, D., Marris-Morini, D., Stoffer, R., Cassan, E., Baudot, C., Korthorst, T., Boeuf, F., Vivien, L.: Simplified modeling and optimization of silicon modulators based on free-carrier plasma dispersion effect. Opt. Express 24(23), 26332–26337 (2016).  https://doi.org/10.1364/oe.24.026332 CrossRefGoogle Scholar
  11. 11.
    Shaikh, A.J., Sidek, O.: Holistic analysis and systematic design of high confinement factor, single mode, nanophotonic silicon-on-insulator rib waveguides. J. Nanoelectron. Optoelectron. 12(4), 381–391 (2017)CrossRefGoogle Scholar
  12. 12.
    Lumerical: DEVICE. https://www.lumerical.com/tcad-products/device/ (2016). Accessed 01 January 2016
  13. 13.
    Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices, 3rd edn. Wiley, New Jersey (2007)Google Scholar
  14. 14.
    Goykhman, I., Desiatov, B., Ben-Ezra, S., Shappir, J., Levy, U.: Optimization of efficiency-loss figure of merit in carrier-depletion silicon Mach–Zehnder optical modulator. Opt. Express 21(17), 19518–19529 (2013).  https://doi.org/10.1364/oe.21.019518 CrossRefGoogle Scholar
  15. 15.
    Lumerical: FDTD Solutions. https://www.lumerical.com/tcad-products/fdtd/ (2016). Accessed 01 January 2016
  16. 16.
    Soref, R.A., Bennett, B.R.: Kramers-Kronig Analysis of Electro-Optical Switching in Silicon. (1987), pp. 32–37Google Scholar
  17. 17.
    Nedeljkovic, M., Soref, R., Mashanovich, G.Z.: Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14 μm infrared wavelength range. IEEE Photonics J. 3(6), 1171–1180 (2011).  https://doi.org/10.1109/jphot.2011.2171930 CrossRefGoogle Scholar
  18. 18.
    Ziebell, M., Marris-Morini, D., Rasigade, G., Crozat, P., Fédéli, J.-M., Grosse, P., Cassan, E., Vivien, L.: Ten Gbit/s ring resonator silicon modulator based on interdigitated PN junctions. Opt. Express 19(15), 14690–14695 (2011).  https://doi.org/10.1364/oe.19.014690 CrossRefGoogle Scholar
  19. 19.
    Xiao, X., Xu, H., Li, X., Hu, Y., Xiong, K., Li, Z., Chu, T., Yu, Y., Yu, J.: 25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions. Opt. Express 20(3), 2507–2515 (2012).  https://doi.org/10.1364/oe.20.002507 CrossRefGoogle Scholar
  20. 20.
    Pantouvaki, M., Yu, H., Rakowski, M., Christie, P., Verheyen, P., Lepage, G., Hoovels, N.V., Absil, P., Campenhout, J.V.: Comparison of silicon ring modulators with interdigitated and lateral p-n junctions. IEEE J. Sel. Top. Quantum Electron. 19(2), 7900308 (2013).  https://doi.org/10.1109/jstqe.2012.2228169 CrossRefGoogle Scholar
  21. 21.
    Yu, H., Pantouvaki, M., Van Campenhout, J., Korn, D., Komorowska, K., Dumon, P., Li, Y., Verheyen, P., Absil, P., Alloatti, L., Hillerkuss, D., Leuthold, J., Baets, R., Bogaerts, W.: Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators. Opt. Express 20(12), 12926–12938 (2012).  https://doi.org/10.1364/oe.20.012926 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNED University of Engineering and TechnologyKarachiPakistan
  2. 2.School of Electrical and Electronic EngineeringUniversiti Sains MalaysiaNibong TebalMalaysia

Personalised recommendations