Advertisement

Journal of Computational Electronics

, Volume 18, Issue 4, pp 1280–1290 | Cite as

Analysis of microwave noise in an enhancement-mode dual-quantum-well InAs HEMT

  • R. PoornachandranEmail author
  • N. Mohankumar
  • R. Saravanakumar
  • G. Sujatha
Article
  • 79 Downloads

Abstract

A systematic theoretical study is carried out on the microwave noise performance of an InAs-based dual-quantum-well double-gate high-electron mobility transistor. The proposed dual-quantum-well HEMT shows prominent small-signal analog/radiofrequency (RF) and noise performance. The results for a device with a gate length of 30 nm reveal enhancement-mode operation with a threshold voltage (Vt) of 0.146 V and high transconductance of 4.77 S/mm along with a cutoff frequency (ft) of 810 GHz and maximum oscillation frequency (fmax) of 900 GHz for Vds = 0.5 V with reduced parasitic capacitance (Cgg) of 0.003 pF/mm. The high-frequency noise of this device is estimated from the gate and drain noise spectral densities evaluated by a Green’s function method under varying bias conditions. This device shows a minimum noise figure (NFmin) of 1.62 dB in combination with an equivalent noise resistance of 972 Ω at 810 GHz for Vgs = 0.6 V and Vds = 0.5 V, which is relatively low and suitable for the design of low-noise amplifiers for use in high-frequency applications. This study shows that such an InAs HEMT with a dual-quantum-well structure is highly suitable for use in higher-frequency applications that require low noise.

Keywords

Dual quantum well InAs NFmin High frequency Noise LNA 

Notes

References

  1. 1.
    Mateos, J., Rodilla, H., Vasallo, B.G., González, T.: Monte Carlo modelling of noise in advanced III–V HEMTs. J. Comput. Electron. 14, 72–86 (2015)CrossRefGoogle Scholar
  2. 2.
    Palermo, C., Marinchio, H., Shiktorov, P., Starikov, E., Gružinskis, V., Mahi, A., Varani, L.: TeraHertz electronic noise in field-effect transistors. J. Comput. Electron. 14, 87–93 (2015)CrossRefGoogle Scholar
  3. 3.
    Chiu, H.-C., Lin, W.-Y., Chou, C.-Y., Yang, S.-H., Mai, K.-D., Chiu, P., Hsueh, W.J., Chyi, J.-I.: Device stress evaluation of InAs/AlSb HEMT on silicon substrate with refractory iridium Schottky gate metal. Microelectron. Eng. 138, 17–20 (2015)CrossRefGoogle Scholar
  4. 4.
    Tsai, R., et al.: Metamorphic AlSb/InAs HEMT for low-power, high-speed electronics. In: 25th Annual Technical Digest 2003. IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 2003, San Diego, CA, USA, pp. 294–297 (2003)Google Scholar
  5. 5.
    Rathi, S., Jogi, J., Gupta, M., Gupta, R.S.: Modeling of hetero-interface potential and threshold voltage for tied and separate nanoscale InAlAs–InGaAs symmetric double-gate HEMT. Microelectron. Reliab. 49, 1508–1514 (2009)CrossRefGoogle Scholar
  6. 6.
    Vasallo, B.G., et al.: Comparison between the noise performance of double- and single-gate InP-based HEMTs. IEEE Trans. Electron Devices 55(6), 1535–1540 (2008)CrossRefGoogle Scholar
  7. 7.
    Vasallo, B.G., et al.: Comparison between the dynamic performance of double- and single-gate AlInAs/InGaAs HEMTs. IEEE Trans. Electron Devices 54(11), 2815–2822 (2007)CrossRefGoogle Scholar
  8. 8.
    Vasallo, B.G., et al.: Monte Carlo comparison between InP-based double-gate and standard HEMTs. In: 2006 European Microwave Integrated Circuits Conference, Manchester, pp. 304–307 (2006)Google Scholar
  9. 9.
    Saravana Kumar, R., Mohanbabu, A., Mohankumar, N., Godwin Raj, D.: Simulation of InGaAs subchannel DG-HEMTs for analogue/RF applications. Int. J. Electron. 105(3), 446–456 (2017)Google Scholar
  10. 10.
    Chugh, N., Bhattacharya, M., Kumar, M., Gupta, R.S.: Sheet carrier concentration and threshold voltage modeling of asymmetrically doped AlGaN/GaN/AlGaN double heterostructure HEMT. In: 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical Computer and Electronics, pp. 446–451 (2017)Google Scholar
  11. 11.
    Chang, E.Y., Kuo, C.I., Hsu, H.T., Chiang, C.Y., Miyamoto, Y.: InAs thin-channel high-electron-mobility transistors with very high current-gain cutoff frequency for emerging submillimeter-wave applications. Appl. Phys. Express 6, 4–7 (2013)Google Scholar
  12. 12.
    Ajayan, J., Nirmal, D.: 20 nm high performance enhancement mode InP HEMT with heavily doped S/D regions for future THz applications. Superlattices Microstruct. 100, 526–534 (2016)CrossRefGoogle Scholar
  13. 13.
    Endoh, Akira, Watanabe, Issei, Kasamatsu, Akifumi, Mimura, Takashi: Monte Carlo simulation of InAs HEMTs considering strain and quantum confinement effects. J. Phys. Conf. Ser. 454, 012036 (2013)CrossRefGoogle Scholar
  14. 14.
    Chang, C., et al.: Investigation of impact ionization in InAs-channel HEMT for high-speed and low-power applications. IEEE Electron Device Lett. 28(10), 856–858 (2007)CrossRefGoogle Scholar
  15. 15.
    Bonani, F., Guerrieri, S.D., Ghione, G., Pirola, M.: A TCAD approach to the physics-based modeling of frequency conversion and noise in semiconductor devices under large-signal forced operation. IEEE Trans. Electron Devices 48(5), 966–977 (2001)CrossRefGoogle Scholar
  16. 16.
    Kugler, S.: Generation–recombination noise in the saturation regime of MODFET structures. IEEE Trans. Electron Devices 35(5), 623–628 (1988)CrossRefGoogle Scholar
  17. 17.
    Fleetwood, D.M.: 1/f noise and defects in microelectronic materials and devices. IEEE Trans. Nucl. Sci. 62(4), 1462–1486 (2015)CrossRefGoogle Scholar
  18. 18.
    Lai, R., Deal, W.R., Mei, X.B., Yoshida, W., Lee, J., Dang, L., Wang, J., Kim, Y.M., Liu, P.H., Radisic, V., Lange, M., Gaier, T., Samoska, L., Fung, A.: Fabrication of InP HEMT devices with extremely high Fmax. In: Conference Proceedings International Conference on Indium Phosphide and Related Materials 8 (2008)Google Scholar
  19. 19.
    Daoudi, M., Dhifallah, I., Ouerghi, A., Chtourou, R.: Si-delta doping and spacer thickness effects on the electronic properties in Si-delta-doped AlGaAs/GaAs HEMT structures. Superlattices Microstruct. 51(4), 497–505 (2012)CrossRefGoogle Scholar
  20. 20.
    Khan, A.B., Siddiqui, M.J., Anjum, S.G.: Comparative study of single and double quantum well AlGaN/GaN HEMT structures for high power GHz frequency application. Mater. Today Proc. 4, 10341–10345 (2017)CrossRefGoogle Scholar
  21. 21.
    Pardeshi, H., Raj, G., Pati, S.K., Mohankumar, N., Sarkar, C.K.: Comparative assessment of III–V heterostructure and silicon underlap double gate MOSFETs. Semiconductors 46, 1299–1303 (2012)CrossRefGoogle Scholar
  22. 22.
    Chang, E.Y., Lin, K.C., Liu, E.H., Chang, C.Y., Chen, T.H., Chen, J.: Submicron T-shaped gate HEMT fabrication using deep-UV lithography. IEEE Electron Device Lett. 15(8), 277–279 (1994)CrossRefGoogle Scholar
  23. 23.
    TCAD Sentaurus, Sdevice User Guide, ver.G-2016, SynopsysGoogle Scholar
  24. 24.
    Ghione, G., Filicori, F.: A computationally efficient unified approach to the numerical analysis of the sensitivity and noise of semiconductor devices. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 12(3), 425–438 (1993)CrossRefGoogle Scholar
  25. 25.
    Ge, J., Liu, H.G., Su, Y.B., Cao, Y.X., Jin, Z.: Physical modeling based on hydrodynamic simulation for the design of InGaAs/InP double heterojunction bipolar transistors. Chin. Phys. B 21(5), 058501 (2012)CrossRefGoogle Scholar
  26. 26.
    Lombardi, C., Manzini, S., Saporito, A., Vanzi, M.: A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 7(11), 1164–1171 (1988)CrossRefGoogle Scholar
  27. 27.
    Panda, D.K., Lenka, T.R.: Effects of trap density on drain current LFN and its model development for E-mode GaN MOS-HEMT. Superlattices Microstruct. 112, 374–382 (2017)CrossRefGoogle Scholar
  28. 28.
    Grasser, T., Tang, T.-W., Kosina, H., Selberherr, S.: A review of hydrodynamic and energy-transport models for semiconductor device simulation. Proc. IEEE 91, 251–274 (2003)CrossRefGoogle Scholar
  29. 29.
    Datta, S., Roenker, K., Cahay, M., Stanchina, W.: Implications of hole versus electron transport properties for high speed PNP heterojunction bipolar transistors. Solid-State Electron. 43(1), 73–79 (1999)CrossRefGoogle Scholar
  30. 30.
    Selberherr, S.: Analysis and simulation of semiconductor devices. Springer, Berlin (2004)Google Scholar
  31. 31.
    Kim, D., del Alamo, J.A.: Lateral and vertical scaling of In0.7Ga0.3AsHEMTs for post-Si-CMOS logic applications. IEEE Trans. Electron Devices 55(10), 2546–2553 (2008)CrossRefGoogle Scholar
  32. 32.
    Kuo, C., et al.: RF and logic performance improvement In0.7Ga0.3As/InAs/In0.7Ga0.3As composite-channel HEMT Using gate-sinking technology. IEEE Electron Device Lett. 29(4), 290–293 (2008)CrossRefGoogle Scholar
  33. 33.
    Mei, X., et al.: First demonstration of amplification at 1 THz using 25-nm InP high electron mobility transistor process. IEEE Electron Device Lett. 36(4), 327–329 (2015)CrossRefGoogle Scholar
  34. 34.
    Kim, D., del Alamo, J.A.: 30-nm InAs PHEMTs with f T = 644 GHz and f max = 681 GHz. IEEE Electron Device Lett. 31(8), 806–808 (2010)CrossRefGoogle Scholar
  35. 35.
    Lin, J., Cai, X., Wu, Y., Antoniadis, D.A., del Alamo, J.A.: Record maximum transconductance of 3.45 mS/µm for III–V FETs. IEEE Electron Device Lett. 37(4), 381–384 (2016)CrossRefGoogle Scholar
  36. 36.
    Kim, D., del Alamo, J.A.: Scalability of Sub-100 nm InAs HEMTs on InP substrate for future logic applications. IEEE Trans. Electron Devices 57(7), 1504–1511 (2010)CrossRefGoogle Scholar
  37. 37.
    Mohankumar, N., Syamal, B., Sarkar, C.K.: Influence of channel and gate engineering on the analog and RF performance of DG MOSFETs. IEEE Trans. Electron Devices 57(4), 820–826 (2010)CrossRefGoogle Scholar
  38. 38.
    Kuo, C.I., Hsu, H.T., Wu, C.Y., Chang, E.Y., Chen, Y.L., Lim, W.C.: Improvement in RF performance of 40-nm InAs-channel based HEMTs using Pt gate sinking with two-step recess processes technology. Microelectron. Eng. 87, 2625–2628 (2010)CrossRefGoogle Scholar
  39. 39.
    Wirth, G.I., Koh, J., Da Silva, R., Thewes, R., Brederlow, R.: Modeling of statistical low-frequency noise of deep-submicrometer MOSFETs. IEEE Trans. Electron Devices 52(7), 1576–1588 (2005)CrossRefGoogle Scholar
  40. 40.
    Liu, Y., Zhuang, Y.: A gate current 1/f noise model for GaN/AlGaN HEMTs. J. Semicond. 35(12), 124005 (2014)CrossRefGoogle Scholar
  41. 41.
    Nsele, S.D., Tartarin, J.G., Escotte, L., Piotrowicz, S., Delage, S.: InAlN/GaN HEMT technology for robust HF receivers: an overview of the HF and LF noise performances. In: 2015 International Conference on Noise and Fluctuations, ICNF (2015)Google Scholar
  42. 42.
    Saha, S.K.: Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond, p. 41e42 ch. 2, sec. 2.2.6.2. CRC Press, Taylor &Francis, Boca Raton (2015)Google Scholar
  43. 43.
    Jamal Deen, M.: Editorial: noise in devices and circuits. IEE Proc. Circuits Devices Syst. 151(2), 93–94 (2004)CrossRefGoogle Scholar
  44. 44.
    Rengel, R., Mateos, J., Pardo, D., González, T., Martín, M.J.: Monte Carlo analysis of dynamic and noise performance of submicron MOSFETs at RF and microwave frequencies. Semicond. Sci. Technol. 16, 939–946 (2001)CrossRefGoogle Scholar
  45. 45.
    Ziel, D.E.R.: Noise in Solid State Devices and Circuits (1978)Google Scholar
  46. 46.
    Balandin, A., et al.: Low flicker-noise GaN/AlGaN heterostructure field-effect transistors for microwave communications. IEEE Trans. Microw. Theory Tech. 47(8), 1413–1417 (1999)CrossRefGoogle Scholar
  47. 47.
    Hartmann, K., Strutt, M.J.O.: Changes of the four noise parameters due to general changes of linear two-port circuits. IEEE Trans. Electron Devices 20, 874–877 (1973)CrossRefGoogle Scholar
  48. 48.
    Hsu, S.S.H., et al.: Characterization and analysis of gate and drain low-frequency noise in AlGaN/GaN HEMTs. In: Proceedings. IEEE Lester Eastman Conference on High Performance Devices, Newark, DE, USA, 2002, pp. 453–460Google Scholar
  49. 49.
    Zhu, Y., Wei, C., Klimashov, O., Li, B., Zhang, C., Tkachenko, Y.: Gate width dependence of noise parameters and scalable noise model for HEMTs. In: 2008 European Microwave Integrated Circuit Conference, Amsterdam, pp. 298–301 (2008)Google Scholar
  50. 50.
    Lee, S., Webb, K.J., Tilak, V., Eastman, L.F.: Intrinsic noise equivalent-circuit parameters for AlGaN/GaN HEMTs. IEEE Trans. Microw. Theory Techn. 51(5), 1567–1577 (2003)CrossRefGoogle Scholar
  51. 51.
    Lee, J., Kuliev, A., Kumar, V., Schwindt, R., Adesida, I.: Microwave noise characteristics of AlGaN/GaN HEMTs on SiC substrates for broad-band low-noise amplifiers. IEEE Microw. Wirel. Compon. Lett. 14(6), 259–261 (2004)CrossRefGoogle Scholar
  52. 52.
    Nsele, S.D., Escotte, L., Tartarin, J.G., Piotrowicz, S.: Noise characteristics of AlInN/GaN HEMTs at microwave frequencies. In: 2013 22nd International Conference on Noise and Fluctuations (ICNF), Montpellier, 2013, pp. 1–4Google Scholar
  53. 53.
    Mohanbabu, A., Saravana Kumar, R., Mohankumar, N.: Noise characterization of enhancement-mode AlGaN graded barrier MIS-HEMT devices. Superlattices Microstruct. 112, 604–618 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.ECE, SKP Engineering CollegeAnna UniversityChennaiIndia
  2. 2.ECE, Bannari Amman Institute of TechnologyAnna UniversityChennaiIndia
  3. 3.ECE, Arunai Engineering CollegeAnna UniversityChennaiIndia

Personalised recommendations