The effects of a Stone–Wales defect on the performance of a graphene-nanoribbon-based Schottky diode

  • Komeil RahmaniEmail author
  • Meisam Rahmani
  • Mohammad Taghi Ahmadi
  • Hediyeh Karimi
  • Razali Ismail


The effects of a Stone–Wales defect on the performance of a graphene-nanoribbon-based Schottky diode are studied herein. To this end, the transmission, energy band structure, density of states, carrier concentration, and current density of the proposed device are modeled analytically in two cases, viz. a pristine and defective graphene nanoribbon, and the results are compared. The results reveal that the introduction of a Stone–Wales defect into the symmetric graphene nanoribbon system obviously changes some of the distinctive properties. After the introduction of a Stone–Wales defect, the slope of the energy levels in the graphene nanoribbon is reduced, leading to a decrease in the Fermi velocity. In this case, the band gap near the Dirac points in the energy band structure is increased. The minimum density of states of the defect-free graphene is almost zero, which can be explained by the shape of the energy band diagram at the Dirac point. Moreover, the minimum density of states in the presence of a Stone–Wales defect is higher than in the defect-free condition, owing to the presence of bands throughout the energy diagram. Finally, the effects of the temperature and channel width on the IV characteristic of the proposed Schottky diode based on a defect-free or defective graphene nanoribbon are studied analytically, and the efficiency of the device is investigated.


Stone–Wales defect Graphene nanoribbon Energy band structure Density of states Carrier concentration Current density 



The authors would like to acknowledge Universiti Teknologi Malaysia (UTM) and Urmia University for providing an excellent research environment in which to complete this work.


  1. 1.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 22(306), 666–669 (2004)Google Scholar
  2. 2.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)Google Scholar
  3. 3.
    Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)Google Scholar
  4. 4.
    Zebrev, G.I.: Graphene nanoelectronics: electrostatics and kinetics. In: Proceeding of Micro- and Nanoelectronics, vol. 7025, p. 70250 M (2008).
  5. 5.
    Dragoman, M., Dragoman, D.: Graphene-based quantum electronics. Quantum Electron. 33(6), 165–214 (2009)zbMATHGoogle Scholar
  6. 6.
    Rahmani, M., Ahmadi, M.T., Ismail, R., Ghadiry, M.H.: Performance of bilayer graphene nanoribbon Schottky diode in comparison with conventional diodes. J. Comput. Theor. Nanosci. 10(2), 323–327 (2013)Google Scholar
  7. 7.
    Terronesa, M., Botello-Méndezb, A., Delgadoc, J.C.: Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5(4), 351–372 (2010)Google Scholar
  8. 8.
    Karimi, H., Ahmadi, M.T., Rahmani, M., Akbari, E., Kiani, M.J., Khalid, M.: Analytical modeling of graphene-based DNA sensor. Sci. Adv. Mater. 4(11), 1142–1147 (2012)Google Scholar
  9. 9.
    Rahmani, M., Ghafoorifard, H., Ahmadi, M.T., Habibiyan, H., Rahbarpour, S., Rahmani, K.: Analytical investigation on the electro-optical properties of graphene nanoscrolls for SPR-based sensor application. J. Comput. Electron. 16(3), 787–795 (2017)Google Scholar
  10. 10.
    Shu-Jen, H., Zhihong, C., Ageeth, A.B., Yanning, S.: Channel-length-dependent transport behaviors of graphene field-effect transistors. IEEE Electron Device Lett. 32(6), 812–814 (2011)Google Scholar
  11. 11.
    Pourasl, A.H., Ahmadi, M.T., Rahmani, M., Chin, H.C., Lim, C.S., Ismail, R., Tan, M.L.P.: Analytical modeling of glucose biosensors based on carbon nanotubes. Nanoscale Res. Lett. 9(1), 33 (2014)Google Scholar
  12. 12.
    Kiani, M.J., Ahmadi, M.T., Karimi, H., Rahmani, M., Hashim, A., Che Harun, F.K.: Analytical modeling of monolayer graphene-based ion-sensitive FET to pH changes. Nanoscale Res. Lett. 8(1), 173 (2013)Google Scholar
  13. 13.
    Avetisyan, A.A., Partoens, B., Peeters, F.M.: Stacking order dependent electric field tuning of the band gap in graphene multilayers. Phys. Rev. B 81, 115432 (2010)Google Scholar
  14. 14.
    Rahmani, M., Ghafoorifard, H., Ahmadi, M.T., Rahmani, K.: Analytical prediction of carbon nanoscroll-based electrochemical glucose biosensor performance. Int. J. Environ. Anal. Chem. 97(11), 1024–1036 (2017)Google Scholar
  15. 15.
    Ahmadi, M.T., Rahmani, M., Ghadiry, M.H., Ismail, R.: Monolayer graphene nanoribbon homojunction characteristics. Sci. Adv. Mater. 4(7), 753–756 (2012)Google Scholar
  16. 16.
    Koshino, M.: Interlayer screening effect in graphene multilayers with ABA and ABC stacking. Phys. Rev. B 81(12), 125304 (2010)Google Scholar
  17. 17.
    Rahmani, M., Ghafoorifard, H., Ahmadi, M.T., Rahmani, K.: An analytical approach to model the optical properties of carbon nanotubes for plasmonic devices. J. Nanoelectron. Optoelectron. 13(2), 208–213 (2018)Google Scholar
  18. 18.
    Celik, N., Balachandran, W., Manivannan, N.: Graphene-based biosensors: methods, analysis and future perspectives. IET Circuits Devices Syst. 9(6), 434–445 (2015)Google Scholar
  19. 19.
    Rahmani, M., Ismail, R., Ahmadi, M.T., Kiani, M.J., Rahmani, K.: Carrier velocity in high-field transport of trilayer graphene nanoribbon field effect transistor. Sci. Adv. Mater. 6(4), 633–639 (2014)Google Scholar
  20. 20.
    Venugopal, A., Chan, J., Li, X., Magnuson, C.W., Kirk, W.P., Colombo, L., Ruoff, R.S., Vogel, E.M.: Effective mobility of single-layer graphene transistors as a function of channel dimensions. J. Appl. Phys. 109(10), 104511 (2011)Google Scholar
  21. 21.
    Pourasl, A.H., Ahmadi, M.T., Rahmani, M., Ismail, R.: Graphene based biosensor model for Escherichia coli bacteria detection. J. Nanosci. Nanotechnol. 17(1), 601–605 (2017)Google Scholar
  22. 22.
    Sahihazar, M.M., Nouri, M., Rahmani, M., Ahmadi, M.T., Kasani, H.: Fabrication of carbon nanoparticle strand under pulsed arc discharge. Plasmonics (2018). Google Scholar
  23. 23.
    Dorgan, V.E., Bae, M.H., Pop, E.: Mobility and saturation velocity in graphene on SiO2. Appl. Phys. Lett. 97(8), 082112 (2010)Google Scholar
  24. 24.
    Rahmani, M., Ahmadi, M.T., Karimi, H., Saeidmanesh, M., Akbari, E., Ismail, R.: Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high speed switching applications. Nanoscale Res. Lett. 8(1), 55 (2013)Google Scholar
  25. 25.
    Kiani, M.J., Ahmadi, M.T., Rahmani, M., Che Harun, F.K.: Degeneracy effect on carrier transport in bilayer graphene nanoribbon. Int. J. Nano Devices Sens. Syst. (IJ-Nano) 2(1), 1–6 (2013)Google Scholar
  26. 26.
    Hass, J., De Heer, W.A., Conrad, E.H.: The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 20(32), 323202 (2008)Google Scholar
  27. 27.
    Karimi, H., Ahmadi, M.T., Yousof, R., Saeidmanesh, M., Rahmani, M., Kiani, M.J., Ghadiry, M.H.: Development of carbon nanotube based biosensors model for detection of single-nucleotide polymorphism. Sci. Adv. Mater. 6(3), 513–519 (2014)Google Scholar
  28. 28.
    Ghadiry, M.H., Manaf, A.B.A., Nadi, M., Rahmani, M., Ahmadi, M.T.: Ionization coefficient of monolayer graphene nanoribbon. Microelectron. Reliab. 52(7), 1396–1400 (2012)Google Scholar
  29. 29.
    Xie, X., Ju, L., Feng, X., Sun, Y., Zhou, R., Liu, K., Fan, S., Li, Q., Jiang, K.: Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Lett. 9(7), 2565–2570 (2009)Google Scholar
  30. 30.
    Rahmani, M., Ismail, R., Ahmadi, M.T., Ghadiry, M.H.: Quantum confinement effect on trilayer graphene nanoribbon carrier concentration. J. Exp. Nanosci. 9(1), 51–63 (2013)Google Scholar
  31. 31.
    Kiani, M.J., Che Harun, F.K., Saeidmanesh, M., Rahmani, M., Parvizi, A., Ahmadi, M.T.: Perpendicular electric field effect on electronic properties of bilayer graphene. Sci. Adv. Mater. 5(12), 1954–1959 (2013)Google Scholar
  32. 32.
    Damon, B.F., Hsin-Ying, C., Yu-Ming, L., Keith, A.J., Fengnian, X., Phaedon, A.: Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett. 9(12), 4474–4478 (2009)Google Scholar
  33. 33.
    Rahmani, M., Ahmadi, M.T., Ghadiry, M.H., Anwar, S., Ismail, R.: The effect of applied voltage on the carrier effective mass in ABA trilayer graphene nanoribbon. J. Comput. Theor. Nanosci. 9(10), 1618–1621 (2012)Google Scholar
  34. 34.
    Ghadiry, M.H., Nadi, M., Rahmani, M., Ahmadi, M.T., Manaf, A.B.A.: Modeling and simulation of saturation region in double gate graphene nanoribbon transistors. Semicond. J. 46(1), 126–129 (2012)Google Scholar
  35. 35.
    Rahmani, M., Ahmadi, M.T., Karimi, H., Kiani, M.J., Akbari, E., Ismail, R.: Analytical modeling of monolayer graphene-based NO2 sensor. Sens. Lett. 11(2), 270–275 (2013)Google Scholar
  36. 36.
    Hammouri, M., Jha, S.K., Vasiliev, I.: First-principles study of graphene and carbon nanotubes functionalized with benzyne. J. Phys. Chem. C 119(32), 18719–18728 (2015)Google Scholar
  37. 37.
    Kuila, T., Bose, S., Mishra, A.K., Khanra, P., Kim, N.H., Lee, J.H.: Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57(7), 1061–1105 (2012)Google Scholar
  38. 38.
    Yang, H., Bao, D.D., Liu, H., Zhang, D.Q., Wang, N., Li, H.T.: Functionalization of graphene and applications of the derivatives. J. Inorg. Organomet. Polym. Mater. 27(5), 1129–1141 (2017)Google Scholar
  39. 39.
    Englert, J.M., Dotzer, C., Yang, G., Schmid, M., Papp, C., Gottfried, J.M., Steinrück, H.P., Spiecker, E., Hauke, F., Hirsch, A.: Covalent bulk functionalization of graphene. Nat. Chem. 3, 279–286 (2011)Google Scholar
  40. 40.
    Vecera, P., Chacón-Torres, J.C., Pichler, T., Reich, S., Soni, H.R., Görling, A., Edelthalhammer, K., Peterlik, H., Hauke, F., Hirsch, A.: Precise determination of graphene functionalization by in situ Raman spectroscopy. Nat. Commun. 8, 15192 (2017)Google Scholar
  41. 41.
    Ren, Y., Chen, K.Q.: Effects of symmetry and Stone–Wales defect on spin-dependent electronic transport in zigzag graphene nanoribbons. J. Appl. Phys. 107, 044514 (2010)Google Scholar
  42. 42.
    Ma, J., Alfè, D., Michaelides, A., Wang, E.: Stone–Wales defects in graphene and other planar sp 2-bonded materials. Phys. Rev. B 80, 033407 (2009)Google Scholar
  43. 43.
    Zeng, H., Zhao, J., Wei, J.W., Hu, H.F.: Effect of N doping and Stone–Wales defects on the electronic properties of graphene nanoribbons. Eur. Phys. J. B 79, 335–340 (2011)Google Scholar
  44. 44.
    Rodrigues, J.N.B., Goncalves, P.A.D., Rodrigues, N.F.G., Ribeiro, R.M., Lopes dos Santos, J.M.B., Peres, N.M.R.: Zigzag graphene nanoribbon edge reconstruction with Stone–Wales defects. Phys. Rev. B 84, 155435 (2011)Google Scholar
  45. 45.
    Azar, P.P., Namiranian, A.: Stone–Wales defects can cause a metal–semiconductor transition in carbon nanotubes depending on their orientation. J. Phys. Condens. Matter 24, 035301 (2012)Google Scholar
  46. 46.
    Sun, Y.J., Ma, F., Ma, D.Y., Xu, K.W., Chu, P.K.: Stress-induced annihilation of Stone–Wales defects in graphene nanoribbons. J. Phys. D Appl. Phys. 45, 305303 (2012)Google Scholar
  47. 47.
    Wang, Z.: The effects of heteroatom-doping in Stone–Wales defects on the electronic properties of graphene nanoribbons. Adv. Mater. Res. 463–464, 793–797 (2012)Google Scholar
  48. 48.
    Pozrikidis, C.: Effect of the Stone–Wales defect on the structure and mechanical properties of single-wall carbon nanotubes in axial stretch and twist. Arch. Appl. Mech. 79(2), 113–123 (2009)zbMATHGoogle Scholar
  49. 49.
    Fan, B.B., Yang, X.B., Zhang, R.: Anisotropic mechanical properties and Stone–Wales defects in graphene monolayer: a theoretical study. Phys. Lett. A 374, 2781–2784 (2010)Google Scholar
  50. 50.
    Mohammadi, A., Haji-Nasiri, S.: The electronic transport properties of defected bilayer sliding armchair graphene nanoribbons. Phys. Lett. A 382(15), 1040–1046 (2018)Google Scholar
  51. 51.
    Rahmani, M., Rahmani, K., Kiani, M.J., Karimi, H., Akbari, E., Ahmadi, M.T., Ismail, R.: Chapter 8: development of gas sensor model for detection of NO2 molecules adsorbed on defect-free and defective graphene. In: Ahmadi, M.T., Ismail, R., Anwar, S. (eds.) Handbook of Research on Nanoelectronic Sensor Modeling and Applications. IGI Global, Hershey (2016)Google Scholar
  52. 52.
    Kiani, M.J., Harun, F.C., Ahmadi, M.T., Rahmani, M., Saeidmanesh, M., Zare, M.: Conductance modulation of charged lipid bilayer using electrolyte-gated graphene FET. Nanoscale Res. Lett. 9(1), 371 (2014)Google Scholar
  53. 53.
    Rahmani, M., Ahmadi, M.T., Kiani, M.J., Ismail, R.: Monolayer graphene nanoribbon P-n junction. J. Nanoeng. Nanomanuf. 2(4), 375–378 (2012)Google Scholar
  54. 54.
    Ghadiry, M., Manaf, A.B.A., Nadi, M., Rahmani, M., Ahmadi, M.T.: Theory of ionization mechanism in graphene nanoribbons. J. Comput. Theor. Nanosci. 9(12), 2190–2192 (2012)Google Scholar
  55. 55.
    Rahmani, M., Ghafoorifard, H., Ahmadi, M.T., Rahbarpour, S., Habibiyan, H., Varmazyari, V., Rahmani, K.: Investigating the mobility of trilayer graphene nanoribbon in nanoscale FETs. J. Electron. Mater. 46(10), 6188–6194 (2017)Google Scholar
  56. 56.
    Karimi, H., Yousof, R., Naghib, D., Ahmadi, M.T., Rahmani, M., Kiani, M.J., Ghadiry, M.H.: Semi analytical modeling of quantum capacitance of graphene-based ion sensitive FET. J. Comput. Theor. Nanosci. 11(3), 596–600 (2014)Google Scholar
  57. 57.
    Kiani, M.J., Ahmadi, M.T., Akbari, E., Rahmani, M., Karimi, H., Khairi, F.: Analytical modeling of bilayer graphene based biosensor. Biosens. Bioelectron. 4(1), 131 (2013)Google Scholar
  58. 58.
    Rahmani, M., Mousavi, S.M., Sadeghi, H.: Chapter 8: Trilayer graphene nanoribbon field effect transistor modeling. In: Ismail, R., Ahmadi, M.T., Anwar, S. (eds.) Advanced Nanoelectronics. Taylor and Francis, CRC Press, Boca Raton (2012)Google Scholar
  59. 59.
    Saeidmanesh, M., Rahmani, M., Karimi, H., Khaledian, M., Ismail, R.: Analytical model for threshold voltage of double gate bilayer graphene field effect transistors. Microelectron. Reliab. 54(1), 44–48 (2014)Google Scholar
  60. 60.
    Karimi, H., Yousof, R., Eshrati, M., Naghib, D., Rahmani, M., Ghadiry, M.H., Akbari, E., Ahmadi, M.T.: Current–voltage modeling of graphene-based DNA sensor. Neural Comput. Appl. 24(1), 85–89 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Komeil Rahmani
    • 1
    Email author
  • Meisam Rahmani
    • 2
  • Mohammad Taghi Ahmadi
    • 3
  • Hediyeh Karimi
    • 4
  • Razali Ismail
    • 5
  1. 1.Department of Electrical, Computer and Biomedical Engineering, Qazvin BranchIslamic Azad UniversityQazvinIran
  2. 2.Department of Electrical EngineeringAmirkabir University of TechnologyTehranIran
  3. 3.Nanoelectronic Group, Nanotechnology Research CenterUrmia UniversityUrmiaIran
  4. 4.Department of Electrical, Electronics and Computer SystemsSwinburne University of TechnologyMelbourneAustralia
  5. 5.Faculty of Electrical EngineeringUniversiti Teknologi MalaysiaJohorMalaysia

Personalised recommendations