First-principles study on the electronic and optical properties of the ZnTe/InP heterojunction

  • Li Chen
  • Xiaolong ZhouEmail author
  • Jie Yu


In this study, the structural models and electronic and optical properties of the ZnTe/InP heterojunction (HJT) were systematically investigated by first-principles calculation based on density functional theory. The results show that the structural stability of model II is better than the other two stacking configurations, and the binding energy is the lowest when the interlayer spacing is 2.4 Å (d2.4-ZnTe/InP). The electronic structure of the ZnTe/InP HJT exhibits characteristics of type II band alignment. Additionally, it was found that the bandgap of the ZnTe/InP HJT can be readily tuned by changing the interlayer spacing. The charge density difference shows that covalent bonds are formed between the layers of the ZnTe/InP HJT, which can enhance the interfacial bonding strength of the heterostructure. The strongest peak of the absorption coefficient of the ZnTe/InP HJT appears in the ultraviolet zone, indicating that it has excellent ultraviolet absorption capacity. Overall, the relevant calculation results can provide a useful theoretical reference for the practical application of ZnTe/InP HJTs in nano-electronic devices.


ZnTe/InP heterojunction First-principles Electronic and optical properties 



This work was financially supported by the Key Project of Natural Science Foundation of Yunnan Province, China (Grant No. 2017FA027), the National Natural Science Foundation of China (Grant No. 51361016) and the Analysis and Testing Foundation of Kunming University of Science and Technology (No. 2018M20172130029).

Compliance with ethical standards

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.


  1. 1.
    Ilanchezhiyan, P., Kumar, G.M., Xiao, F., Madhankumar, A., Siva, C., Yuldashev, S.U., Cho, H.D., Kang, T.W.: Interfacial charge transfer in ZnTe/ZnO nano arrayed heterostructures and their improved photoelectronic properties. Sol. Energy Mater. Sol C 183, 73–81 (2018)CrossRefGoogle Scholar
  2. 2.
    Sun, Y., Zhao, Q., Gao, J., Ye, Y., Wang, W., Zhu, R., Xu, J., Chen, L., Yang, J., Dai, L., Liao, Z., Yu, D.: In situ growth, structure characterization, and enhanced photocatalysis of high-quality, single-crystalline ZnTe/ZnO branched nanoheterostructures. Nanoscale 3, 4418–4426 (2011)CrossRefGoogle Scholar
  3. 3.
    Rakhshani, A.E., Thomas, S.: Nitrogen doping of ZnTe for the preparation of ZnTe/ZnO light-emitting diode. J. Mater. Sci. 48, 6386–6392 (2013)CrossRefGoogle Scholar
  4. 4.
    Donya, H., Taha, T.A.: Preparation, structure, and optical properties of ZnTe and PbTe nanocrystals grown in fluorophosphate glass. J. Mater. Sci. Mater. Electron. 29, 8610–8616 (2018)CrossRefGoogle Scholar
  5. 5.
    Bukhtiar, A., Bingsuo, Z.: The preparation and optical properties of Ni(II) and Mn(II) doped in ZnTe nanobelt/nanorod by using chemical vapor deposition. J. Nanosci. Nanotechnol. 18, 4700–4713 (2018)CrossRefGoogle Scholar
  6. 6.
    Sun, X., Chen, Z., Wang, Y., Lu, Z., Shi, J., Washington, M., Lu, T.: Van der Waals epitaxial ZnTe thin film on single-crystalline grapheme. J. Appl. Phys. 123, 025303 (2018)CrossRefGoogle Scholar
  7. 7.
    Rojas-Chávez, H., González-Domínguez, J.L., Román-Doval, R., Juárez-García, J.M., Daneu, N., Farías, R.: ZnTe semiconductor nanoparticles: a chemical approach of the mechanochemical synthesis. Mater. Sci. Semicond. Proc. 86, 128–138 (2018)CrossRefGoogle Scholar
  8. 8.
    Cao, Y.L., Liu, Z.T., Chen, L.M., Tang, Y.B., Luo, L.B., Jie, J.S., Zhang, W.J., Lee, S.T., Lee, C.S.: Single-crystalline ZnTe nanowires for application as high-performance green/ultraviolet photodetector. Opt. Express 19, 6100–6108 (2011)CrossRefGoogle Scholar
  9. 9.
    Wang, Y., Li, H., Yang, T., Zou, Z., Qi, Z., Ma, L., Chen, J.: Space-confined physical vapour deposition of high quality ZnTe nanosheets for optoelectronic application. Mater. Lett. 238, 309–312 (2019)CrossRefGoogle Scholar
  10. 10.
    Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of grapheme. Rev. Mod. Phys. 81, 109–162 (2009)CrossRefGoogle Scholar
  11. 11.
    Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451–10453 (2005)CrossRefGoogle Scholar
  12. 12.
    Niu, P., Zhang, L., Liu, G., Cheng, H.: Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22, 4763–4770 (2012)CrossRefGoogle Scholar
  13. 13.
    Pan, Y., Zhang, L., Huang, L., Li, L., Meng, L., Gao, M., Huan, Q., Lin, X., Wang, Y., Du, S., Freund, H., Gao, H.: Construction of 2D atomic crystals on transition metal surfaces: graphene, silicene, and hafnene. Small 10, 2215–2225 (2014)CrossRefGoogle Scholar
  14. 14.
    Zhu, F., Chen, W., Xu, Y., Gao, C., Guan, D., Liu, C., Qian, D., Zhang, S., Jia, J.: Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015)CrossRefGoogle Scholar
  15. 15.
    Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole Mobility. ACS Nano 8, 4033–4041 (2014)CrossRefGoogle Scholar
  16. 16.
    Kamal, C., Ezawa, M.: Arsenene: two-dimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B 91, 085423 (2015)CrossRefGoogle Scholar
  17. 17.
    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)CrossRefGoogle Scholar
  18. 18.
    Cao, S., Low, J., Yu, J., Jaroniec, M.: Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27, 2150–2176 (2015)CrossRefGoogle Scholar
  19. 19.
    Ren, K., Sun, M., Luo, Y., Wang, S., Yu, J., Tang, W.: First-principle study of electronic and optical properties of two-dimensional materials-based heterostructures based on transition metal dichalcogenides and boron phosphide. Appl. Surf. Sci. 476, 70–75 (2019)CrossRefGoogle Scholar
  20. 20.
    Sun, M., Chou, J., Shi, L., Gao, J., Hu, A., Tang, W., Zhang, G.: Few-layer PdSe2 sheets: promising thermoelectric materials driven by high valley convergence. ACS Omega 3, 5971–5979 (2018)CrossRefGoogle Scholar
  21. 21.
    Luo, Y., Wang, S., Ren, K., Chou, J., Yu, J., Sun, Z., Sun, M.: Transition-metal dichalcogenides/Mg(OH)2 van der Waals heterostructures as promising water-splitting photocatalysts: a first-principles study. Phys. Chem. Chem. Phys. 21, 1791–1796 (2019)CrossRefGoogle Scholar
  22. 22.
    Long, T., Cao, J., Jiang, Z.: Predictable spectroscopic properties of type-II ZnTe/CdSe nanocrystals and electron/hole quenching. Phys. Chem. Chem. Phys. 21, 5824–5833 (2019)CrossRefGoogle Scholar
  23. 23.
    Averin, S.V., Kuznetzov, P.I., Zhitov, V.A., Zakharov, L.Y., Kotov, V.M.: Electrical, optical and spectral characteristics of type-II ZnSe/ZnTe/GaAs superlattice and MSM-photodetector on their base. Opt. Quantum Electron. 50, 368 (2018)CrossRefGoogle Scholar
  24. 24.
    Chen, X., Ji, W., Zhang, C., Wang, P.: Novel optical properties of MoS2 on monolayer zinc tellurium substrate. J. Mater. Sci. 51, 4580–4587 (2016)CrossRefGoogle Scholar
  25. 25.
    Omanakuttan, G., Sacristán, O.M., Marcinkevičius, S., Uždavinys, T.K., Jiménez, J., Ali, H., Leifer, K., Lourdudoss, S., Sun, Y.: Optical and interface properties of direct InP/Si heterojucntion formed by corrugated epitaxial lateral overgrowth. Opt. Mater. Express. 9, 1488–1500 (2019)CrossRefGoogle Scholar
  26. 26.
    Wang, K., Liang, D., Li, Y., Wang, S., Lei, M., Li, S., Lu, P.: Electronic properties and band offsets in InP(1−x−y)BixNy. Mod. Phys. Lett. B 33, 1950058 (2019)CrossRefGoogle Scholar
  27. 27.
    Segall, M.D., Lindan, P.J., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717–2744 (2002)CrossRefGoogle Scholar
  28. 28.
    Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., Payne, M.C.: First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005)Google Scholar
  29. 29.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992)CrossRefGoogle Scholar
  32. 32.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  33. 33.
    Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990)CrossRefGoogle Scholar
  34. 34.
    Ren, K., Wang, S., Luo, Y., Xu, Y., Sun, M., Yu, J., Tang, W.: Strain-enhanced properties of van der Waals heterostructure based on blue phosphorus and g-GaN as a visible-light-driven photocatalyst for water splitting. RSC Adv. 9, 4816–4823 (2019)CrossRefGoogle Scholar
  35. 35.
    Ren, K., Sun, M., Luo, Y., Wang, S., Xu, Y., Yu, J., Tang, W.: Electronic and optical properties of van der Waals vertical heterostructures based on two-dimensional transition metal dichalcogenides: first-principles calculations. Phys. Lett. A 383, 1487–1492 (2019)CrossRefGoogle Scholar
  36. 36.
    Sun, M., Chou, J., Gao, J., Cheng, Y., Hu, A., Tang, W., Zhang, G.: Exceptional optical absorption of buckled arsenene covering a broad spectral range by molecular doping. ACS Omega 3, 8514–8520 (2018)CrossRefGoogle Scholar
  37. 37.
    Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)CrossRefGoogle Scholar
  38. 38.
    Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Broyden, C.G.: The convergence of a class of double-rank minimization algorithms. J. Inst. Maths. Appl. 6(76–90), 222–231 (1970)CrossRefzbMATHGoogle Scholar
  40. 40.
    Yadav, S.K., Sharma, V., Ramprasad, R.: Controlling electronic structure through epitaxial strain in ZnSe/ZnTe nano-heterostructures. J. Appl. Phys. 118, 015701 (2015)CrossRefGoogle Scholar
  41. 41.
    Boucharef, M., Benalia, S., Rached, D., Merabet, M., Djoudi, L., Abidri, B., Benkhettou, N.: First-principles study of the electronic and structural properties of (CdTe)n/(ZnTe)n superlattices. Superlattice. Microstruct. 75, 818–830 (2014)CrossRefGoogle Scholar
  42. 42.
    Wang, J., Yang, X., Cao, J., Wang, Y., Li, Q.: Computational study of electronic, optical and photocatalytic properties of single-layer hexagonal zinc chalcogenides. Comput. Mater. Sci. 150, 432–438 (2018)CrossRefGoogle Scholar
  43. 43.
    Zhang, C.Y., Wu, M.: Theoretical prediction of sandwiched two-dimensional phosphide binary compounds sheets with tunable bandgaps and anisotropic physical properties. Nanotechnology 29, 095703 (2018)CrossRefGoogle Scholar
  44. 44.
    Li, J., Wei, W., Mu, C., Huang, B., Dai, Y.: Electronic properties of g-C3N4/CdS heterojunction from the first-principles. Physica E 103, 459–463 (2018)CrossRefGoogle Scholar
  45. 45.
    Ren, M., Li, M., Zhang, C., Yuan, M., Li, P., Li, F., Ji, W., Chen, X.: Band structures in silicone on monolayer gallium phosphide substrate. Solid State Commun. 239, 32–36 (2016)CrossRefGoogle Scholar
  46. 46.
    Chen, X., Sun, X., Yang, D.G., Meng, R., Tan, C., Yang, Q., Liang, Q., Jiang, J.: SiGe/h-BN heterostructure with inspired electronic and optical properties: a first-principles study. J. Mater. Chem. C 4, 10082–10089 (2016)CrossRefGoogle Scholar
  47. 47.
    Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)CrossRefGoogle Scholar
  48. 48.
    Hoover, W.G.: Canonical dunamics: equilibrium phase-space distributions. Phys. Rev. B 31, 1695–1697 (1985)CrossRefGoogle Scholar
  49. 49.
    Safari, M., Izadi, Z., Jalilian, J., Ahmad, I., Jalali-Asadabadi, S.: Metal mono-chalcogenides ZnX and CdX (X = S, Se and Te) monolayers: chemical bond and optical interband transitions by first principles calculations. Phys. Lett. A 381, 663–670 (2017)CrossRefGoogle Scholar
  50. 50.
    Wang, J., Isshiki, M.: Wide-bandgap II–VI semiconductors: growth and properties. Springer Handb Electron Photonic Mater. 16, 325–342 (2006). CrossRefGoogle Scholar
  51. 51.
    Zhuang, H.L., Singh, A.K., Hennig, R.G.: Computational discovery of single-layer III–V materials. Phys. Rev. B 87, 165415 (2013)CrossRefGoogle Scholar
  52. 52.
    Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001)CrossRefGoogle Scholar
  53. 53.
    Li, K., Wang, X., Xue, D.: Electronegativities of elements in covalent crystals. J. Phys. Chem. A 112, 7894–7897 (2008)CrossRefGoogle Scholar
  54. 54.
    Cao, H., Zhou, Z., Zhou, X., Cao, J.: Tunable electronic properties and optical properties of novel stanene/ZnO heterostructure: first-principles calculation. Comput. Mater. Sci. 139, 179–184 (2017)CrossRefGoogle Scholar
  55. 55.
    Björkman, T., Gulans, A., Krasheninnikov, A.V., Nieminen, R.M.: Van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys. Rev. Lett. 108, 235502 (2012)CrossRefGoogle Scholar
  56. 56.
    Hu, J., Ji, G., Ma, X., He, H., Huang, C.: Probing interfacial electronic properties of grapheme/CH3NH3PbI3 heterojunctions: a theoretical study. Appl. Surf. Sci. 440, 35–41 (2018)CrossRefGoogle Scholar
  57. 57.
    Cordero, B., Gómez, V., Platero-Prats, A.E., Revés, M., Echeverría, J., Cremades, E., Barragán, F., Alvarez, S.: Covalent radii revisited. Dalton Trans. 21, 2832–2838 (2008)CrossRefGoogle Scholar
  58. 58.
    Lian, X., Niu, M., Huang, Y., Cheng, D.: MoS2-CdS heterojunction with enhanced photocatalytic activity: a first principles study. J. Phys. Chem. Solids 120, 52–56 (2018)CrossRefGoogle Scholar
  59. 59.
    Cheng, H., Wang, X., Hu, Y., Song, H., Huo, J., Li, L., Qian, P., Song, Y.: Ag@ZnO core-shell nanoparticles study by first principle: the structural, magnetic and optical properties. J. Solid State Chem. 244, 181–186 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringKunming University of Science and TechnologyKunmingChina
  2. 2.Key Laboratory of Advanced Materials of Yunnan Province/Key Laboratory of Advanced Materials in Rare & Precious and Nonferrous MetalsMinistry of EducationKunmingChina

Personalised recommendations