Advertisement

Adaptation of a compact SPICE level 3 model for oxide thin-film transistors

  • Kavindra KandpalEmail author
  • Navneet Gupta
Article
  • 43 Downloads

Abstract

Oxide thin-film transistors (TFTs) and metal–oxide–semiconductor field-effect transistors (MOSFETs) operate via different conduction mechanisms but exhibit similar device characteristics. In this work, a SPICE level 3 model originally defined for MOSFETs is successfully adapted to provide a behavioral model for oxide TFTs. This adapted compact model is applicable to all kinds of oxide TFTs, irrespective of the channel and dielectric material used. To capture the TFT behavior efficiently, the experimental characteristic of an oxide TFT is used to set various SPICE level 3 parameters.

Keywords

Oxide TFT SPICE level 3 Behavioral model ZnO Interface state density 

Notes

Acknowledgements

The authors acknowledge the Department of Science and Technology (DST), New Delhi, India FIST Program (project SR/FST/ETI-246/2013).

References

  1. 1.
    Cong, Y., Han, D., Dong, J., Yu, W., Zhang, X., Cui, G., Zhang, X., Zhang, S., Wang, Y.: High-performance fully transparent Al–Sn–Zn–O thin-film transistors using double-channel structures. Electron. Lett. 52, 1069–1070 (2016)CrossRefGoogle Scholar
  2. 2.
    Chiang, H.Q., Wager, J.F., Hoffman, R.L., Jeong, J., Keszler, D.A.: High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Appl. Phys. Lett. 86, 013503 (2005)CrossRefGoogle Scholar
  3. 3.
    Qian, L.X., Lai, P.T., Tang, W.M.: Effects of Ta incorporation in La2O3 gate dielectric of InGaZnO thin-film transistor. Appl. Phys. Lett. 104, 1–6 (2014).  https://doi.org/10.1063/1.4869761 CrossRefGoogle Scholar
  4. 4.
    Yang, J., Pi, S., Han, Y., Fu, R., Meng, T., Zhang, Q.: Characteristic of bismuth-doped tin oxide thin-film transistors. IEEE Trans. Electron Dev. 63, 1904–1909 (2016)CrossRefGoogle Scholar
  5. 5.
    Ho, C.H., Panagopoulos, G., Roy, K.: A physical model for grain-boundary-induced threshold voltage variation in polysilicon thin-film transistors. IEEE Trans. Electron Dev. 59, 2396–2402 (2012)CrossRefGoogle Scholar
  6. 6.
    Jeon, Y.W., Hur, I., Kim, Y., Bae, M., Jung, H.K., Kong, D., Kim, W., Kim, J., Jang, J., Kim, D.M.: Physics-based SPICE model of a-InGaZnO thin-film transistor using Verilog-A. J. Semicond. Technol. Sci. 11, 153–161 (2011)CrossRefGoogle Scholar
  7. 7.
    Shur, M., Hack, M., Shaw, J.G.: A new analytic model for amorphous silicon thin-film transistors. J. Appl. Phys. 66, 3371–3380 (1989)CrossRefGoogle Scholar
  8. 8.
    Shur, M.S., Slade, H.C., Jacunski, M.D., Owusu, A.A., Ytterdal, T.: SPICE models for amorphous silicon and polysilicon thin film transistors. J. Electrochem. Soc. 144, 2833–2839 (1997)CrossRefGoogle Scholar
  9. 9.
    Antognetti, P., Massobrio, G.: Semiconductor device modeling with SPICE. McGraw-Hill, New York (1990)Google Scholar
  10. 10.
    Wondmagegn, W.T., Satyala, N.T., Pieper, R.J., Quevedo-Lopez, M.A., Gowrisanker, S., Alshareef, H.N., Stiegler, H.J., Gnade, B.E.: Impact of semiconductor/metal interfaces on contact resistance and operating speed of organic thin film transistors. J. Comput. Electron. 10, 144–153 (2011)CrossRefGoogle Scholar
  11. 11.
    Cheng, X., Lee, S., Yao, G., Nathan, A.: TFT compact modeling. J. Disp. Technol. 12, 898–906 (2016).  https://doi.org/10.1109/JDT.2016.2556980 CrossRefGoogle Scholar
  12. 12.
    Kandpal, K., Gupta, N.: Investigations on high-κ dielectrics for low threshold voltage and low leakage zinc oxide thin-film transistor, using material selection methodologies. J. Mater. Sci. Mater. Electron. 27, 5972–5981 (2016)CrossRefGoogle Scholar
  13. 13.
    Seto, J.Y.W.: The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46, 5247–5254 (1975).  https://doi.org/10.1063/1.321593 CrossRefGoogle Scholar
  14. 14.
    Kandpal, K., Singh, J., Gupta, N., Shekhar, C.: Effect of thickness on the properties of ZnO thin films prepared by reactive RF sputtering. J. Mater. Sci. Mater. Electron. 29, 14501–14507 (2018)CrossRefGoogle Scholar
  15. 15.
    Perumal, C., Ishida, K., Shabanpour, R., Boroujeni, B.K., Petti, L., Munzenrieder, N.S., Salvatore, G.A., Carta, C., Troster, G., Ellinger, F.: A compact a-IGZO TFT model based on MOSFET SPICE Level = 3 template for Analog/RF circuit designs. IEEE Electron Dev. Lett. 34, 1391–1393 (2013).  https://doi.org/10.1109/LED.2013.2279940 CrossRefGoogle Scholar
  16. 16.
    Wong, M., Chow, T., Wong, C.C., Zhang, D.: A quasi two-dimensional conduction model for polycrystalline silicon thin-film transistor based on discrete grains. IEEE Trans. Electron Dev. 55, 2148–2156 (2008).  https://doi.org/10.1109/TED.2008.926277 CrossRefGoogle Scholar
  17. 17.
    Kuo, P.-J., Chang, S.-P., Chang, S.-J.: Investigation of zinc-tin-oxide thin-film transistors with varying SnO2 contents. Electron. Mater. Lett. 10, 89–94 (2014)CrossRefGoogle Scholar
  18. 18.
    Park, J.-S., Jeong, J.K., Mo, Y.-G., Kim, H.D., Kim, C.-J.: Control of threshold voltage in ZnO-based oxide thin film transistors. Appl. Phys. Lett. 93, 33513 (2008)CrossRefGoogle Scholar
  19. 19.
    Ortiz-Conde, A., Sánchez, F.J.G., Liou, J.J., Cerdeira, A., Estrada, M., Yue, Y.: A review of recent MOSFET threshold voltage extraction methods. Microelectron. Reliab. 42, 583–596 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringBirla Institute of Technology and Science PilaniPilaniIndia

Personalised recommendations