Theoretical study of the effect of polarization matching layers on the Shockley–Read–Hall recombination-induced dark current density in InGaN/GaN heterostructure solar cells

  • Basant SainiEmail author
  • Sugandha Sharma
  • Ravinder Kaur
  • Suchandan Pal
  • Avinashi Kapoor


The physical effects of the polarization-induced charge density on the losses due to Shockley–Read–Hall (SRH) recombination in InGaN/GaN solar cells under conditions of low p-GaN doping density (~ 5 × 1017 cm−3) are discussed. Theoretical studies are performed for four p-i-n InxGa1−xN/GaN heterostructures (with x = 0.10, 0.15, 0.20, and 0.25) to analyze the effect of the polarization-induced interface charges on the built-in field present across the absorption region of the cell, which is otherwise responsible for the extraction of photogenerated charge carriers. Furthermore, the role of polarization matching layers, strategically placed at the i-InGaN/p-GaN interface, in countering the SRH recombination-induced dark current density is discussed based on simulations performed using APSYS software from Crosslight. The simulation results are validated using a mathematical model.


InGaN/GaN Solar cell APSYS Built-in potential Polarization matching layers (PMLs) Shockley–Read–Hall (SRH) recombination 



  1. 1.
    Wu, J.: When group-III nitrides go infrared: new properties and perspectives. J. Appl. Phys. 106, 011101-1–011101-28 (2009)Google Scholar
  2. 2.
    Dahal, R., Li, J., Aryal, K., Lin, J.Y., Jiang, H.X.: InGaN/GaN multiple quantum well concentrator solar cells. Appl. Phys. Lett. 97, 073115-1–073115-3 (2010)Google Scholar
  3. 3.
    Jeng, M.J., Lee, Y.L., Chang, L.B.: Temperature dependences of InxGa1−xN multiple quantum well solar cells. J. Phys. D Appl. Phys. 42, 105101-1–105101-6 (2009)Google Scholar
  4. 4.
    Zheng, X., Horng, R.H., Wuu, D.S., Chu, M.T., Lia, W.Y., Wu, M.H., Lin, R.M., Lu, Y.C.: High-quality InGaN/GaN heterojunctions and their photovoltaic effects. Appl. Phys. Lett. 93, 261108-1–261108-3 (2008)Google Scholar
  5. 5.
    Cai, X.M., Zeng, S.W., Zhang, B.P.: Fabrication and characterization of InGaN p-i-n homojunction solar cell. Appl. Phys. Lett. 95, 173504-1–173504-3 (2009)Google Scholar
  6. 6.
    Jampana, B.R., Melton, A.G., Jamil, M., Faleev, N.N., Opila, R.L., Ferguson, I.T., Honsberg, C.B.: Design and realization of wide-band-gap (~ 2.67 eV) InGaN p-n junction solar cell. IEEE Electron Device Lett. 31, 32–34 (2010)CrossRefGoogle Scholar
  7. 7.
    Fischer, S., Wetzel, C., Haller, E.E.: On p-type doping in GaN acceptor binding energies. Appl. Phys. Lett. 67, 1298–1300 (1995)CrossRefGoogle Scholar
  8. 8.
    Kumakura, K., Makimoto, T., Kobayashi, N.: Mg-acceptor activation mechanism and transport characteristics in p-type InGaN grown by metalorganic vapour phase epitaxy. J. Appl. Phys. 93, 3370–3375 (2003)CrossRefGoogle Scholar
  9. 9.
    Fiorentini, V., Bernadini, F., Ambacher, O.: Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures. Appl. Phys. Lett. 80, 1204–1206 (2002)CrossRefGoogle Scholar
  10. 10.
    Li, Z.Q., Lestradet, M., Xiao, Y.G., Li, S.: Effects of polarization charge on the photovoltaic properties of InGaN solar cells. Phys. Status Solidi A 208, 928–931 (2011)CrossRefGoogle Scholar
  11. 11.
    Chang, J.Y., Liou, B.T., Lin, H.W., Shih, Y.H., Chang, S.H., Kuo, Y.K.: Numerical investigation on the enhanced carrier collection efficiency of Ga-face GaN/InGaN p-i-n solar cells with polarization compensation interlayers. Opt. Lett. 36, 3500–3502 (2011)CrossRefGoogle Scholar
  12. 12.
    Kuo, Y.K., Chang, J.Y., Shih, Y.H.: Numerical study of the effects of hetero-interfaces, polarization charges, and step-graded interlayers on the photovoltaic properties of (0001) face GaN/InGaN p-i-n solar cell. IEEE J. Quant. Electron. 48, 367–374 (2012)CrossRefGoogle Scholar
  13. 13.
    Saini, B., Adhikari, S., Pal, S., Kapoor, A.: Polarization compensation at low p-GaN doping density in InGaN/GaN p-i-n solar cells: effect of InGaN interlayers. Superlattices Microstruct. 107, 127–135 (2017)CrossRefGoogle Scholar
  14. 14.
    APSYS User’s Manual, Crosslight Software Inc. Accessed 20 Mar 2015
  15. 15.
    Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001)CrossRefGoogle Scholar
  16. 16.
    Piprek, J.: Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation. Academic, San Diego (2003)Google Scholar
  17. 17.
    Caughey, D.M., Thomas, R.E.: Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 52, 2192–2193 (1967)CrossRefGoogle Scholar
  18. 18.
    Mnatsakanov, T.T., Levinshtein, M.E., Pmortseva, L.I., Yurkov, S.N., Simin, G.S., Khan, M.A.: Carrier mobility model for GaN. Solid State Electron. 47, 111–115 (2003)CrossRefGoogle Scholar
  19. 19.
    Bandic, Z.Z., Bridger, P.M., Piquette, E.C., McGill, T.C.: Electron diffusion length and lifetime in p-type GaN. Appl. Phys. Lett. 73, 3276–3278 (1998)CrossRefGoogle Scholar
  20. 20.
    Chen, F., Cartwright, A.N., Lu, H., Schaff, W.J.: Temperature dependence of carrier lifetimes in InN. Phys. Status Solidi A 202, 768–772 (2005)CrossRefGoogle Scholar
  21. 21.
    Brown, G.F., Ager III, J.W., Walukiewicz, W., Wu, J.: Finite element simulations of compositionally graded InGaN solar cells. Sol. Energy Mater. Sol. Cells 94, 478–483 (2010)CrossRefGoogle Scholar
  22. 22.
    Mayrock, O., Wünsche, H.-J., Henneberger, F.: Polarization charge screening and indium surface segregation in (In, Ga) N/GaN single and multiple quantum wells. Phys. Rev. B 62, 16870–16880 (2000)CrossRefGoogle Scholar
  23. 23.
    Nelson, J.: The Physics of Solar Cells. Imperial College Press, London (2005)Google Scholar
  24. 24.
    Belghouthi, R., Salvestrini, J.P., Gazzeh, M.H., Chevallier, C.: Analytical modeling of polarization effects in InGaN double hetero-junction p-i-n solar cells. Superlattices Microstruct. 100, 168 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Basant Saini
    • 1
    • 3
    Email author
  • Sugandha Sharma
    • 1
  • Ravinder Kaur
    • 2
  • Suchandan Pal
    • 3
  • Avinashi Kapoor
    • 1
  1. 1.Department of Electronic ScienceUniversity of DelhiNew DelhiIndia
  2. 2.Department of Electronics, Deen Dayal Upadhyaya CollegeUniversity of DelhiNew DelhiIndia
  3. 3.Optoelectronics and MOEMS GroupCSIR-Central Electronics Engineering Research InstitutePilaniIndia

Personalised recommendations