Electron injection in anthocyanidin and betalain dyes for dye-sensitized solar cells: a DFT approach

  • Aanuoluwapo Raphael Obasuyi
  • Daniel Glossman-Mitnik
  • Norma Flores-HolguínEmail author


A theoretical investigation was carried out using density functional theory at the MN12SX/6-311+G(d,p) level of theory to calculate and compare the photoinduced electron injection for selected members of the anthocyanidin and betalain families. The rate constant of the injection for both families was calculated, and it was verified that the regeneration in the dye during the DSSC operation is caused by an energetic electron injection of the matched electrons in the dye. The present research shows that the rate constant of electron injection of the selected anthocyanidin family was very rapid: Aurantinidin has the overall best injection rate for both families. Aromaticity, the open-circuit voltage \({V}_{{\mathrm{oc}}}\), the \(\Delta {G}_{\mathrm{inject}}\) and \(\Delta {G}_{\mathrm{reg}}\) values for the selected molecule play a vital role in the comparison of both selected families. A prediction of the best dye based on the above properties was made for the maximum efficiency of the DSSC to be achieved.


Electron injection Anthocyanidin Betalain DFT DSSC 



Norma Flores-Holguín and Daniel Glossman-Mitnik are CONACyT and CIMAV researchers. Obasuyi Aanuoluwapo Raphael gratefully acknowledges a Doctoral Fellowship from the National Science and Technology Council in Mexico (CONACYT).


  1. 1.
    Holdren, J.P.: Science and technology for sustainable well-being. Science 319(5862), 424–434 (2008)CrossRefGoogle Scholar
  2. 2.
    Mackay, A.: Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. J. Environ. Qual. 37(6), 2407 (2008)CrossRefGoogle Scholar
  3. 3.
    Green, M.A.: Status of crystalline photovoltaic technology (Chapter 579). In: Sayigh, A. (ed.) World Renewable Energy Congress VI, pp. 2630–2635. Pergamon, Oxford (2000)CrossRefGoogle Scholar
  4. 4.
    Zweibel, K., Mason, J., Fthenakis, V.: A solar grand plan. Sci. Am. 298(1), 64–73 (2008)CrossRefGoogle Scholar
  5. 5.
    Service, R.F.: Is it time to shoot for the sun? Science 309(5734), 548–551 (2005)CrossRefGoogle Scholar
  6. 6.
    Kammen, D.M., Pacca, S.: Assessing the costs of electricity. Annu. Rev. Environ. Resour. 29(1), 301–344 (2004)CrossRefGoogle Scholar
  7. 7.
    Alsema, E.A.: Energy pay-back time and CO\(_2\) emissions of PV systems. Prog. Photovolt. Res. Appl. 8(1), 17–25 (2000)CrossRefGoogle Scholar
  8. 8.
    Li, G., Jiang, K.J., Li, Y.F., Li, S.L., Yang, L.M.: Efficient structural modification of triphenylamine-based organic dyes for dye-sensitized solar cells. J. Phys. Chem. C 112(30), 11591–11599 (2008)CrossRefGoogle Scholar
  9. 9.
    Sayama, K., Tsukagoshi, S., Hara, K., Ohga, Y., Shinpou, A., Abe, Y., Suga, S., Arakawa, H.: Photoelectrochemical properties of J aggregates of benzothiazole merocyanine dyes on a nanostructured TiO\(_2\) film. J. Phys. Chem. B 106(6), 1363–1371 (2002)CrossRefGoogle Scholar
  10. 10.
    Burfeindt, B., Hannappel, T., Storck, W., Willig, F.: Measurement of temperature-independent femtosecond interfacial electron transfer from an anchored molecular electron donor to a semiconductor as acceptor. J. Phys. Chem. 100(41), 16463–16465 (1996)CrossRefGoogle Scholar
  11. 11.
    Liu, D., Fessenden, R.W., Hug, G.L., Kamat, P.V.: Dye capped semiconductor nanoclusters. Role of back electron transfer in the photosensitization of SnO\(_2\) nanocrystallites with cresyl violet aggregates. J. Phys. Chem. B 101(14), 2583–2590 (1997)CrossRefGoogle Scholar
  12. 12.
    Hagberg, D.P., Marinado, T., Karlsson, K.M., Nonomura, K., Qin, P., Boschloo, G., Brinck, T., Hagfeldt, A., Sun, L.: Tuning the HOMO and LUMO energy levels of organic chromophores for dye sensitized solar cells. J. Org. Chem. 72(25), 9550–9556 (2007)CrossRefGoogle Scholar
  13. 13.
    Chen, R., Yang, X., Tian, H., Wang, X., Hagfeldt, A., Sun, L.: Effect of tetrahydroquinoline dyes structure on the performance of organic dye-sensitized solar cells. Chem. Mater. 19(16), 4007–4015 (2007)CrossRefGoogle Scholar
  14. 14.
    Bredas, J.L., Norton, J.E., Cornil, J., Coropceanu, V.: Molecular understanding of organic solar cells: the challenges. Acc. Chem. Res. 42(11), 1691–1699 (2009)CrossRefGoogle Scholar
  15. 15.
    Labat, F., Ciofini, I., Hratchian, H.P., Frisch, M., Raghavachari, K., Adamo, C.: First principles modeling of eosin-loaded ZnO films: a step toward the understanding of dye-sensitized solar cell performances. J. Am. Chem. Soc. 131(40), 14290–14298 (2009)CrossRefGoogle Scholar
  16. 16.
    Jamorski Jödicke, C., Lüthi, H.P.: Time-dependent density-functional theory investigation of the formation of the charge transfer excited state for a series of aromatic donor-acceptor systems. Part I. J. Chem. Phys. 117(9), 4146–4156 (2002)CrossRefGoogle Scholar
  17. 17.
    Preat, J., Jacquemin, D., Wathelet, V., André, J.M., Perpète, E.A.: TD-DFT investigation of the UV spectra of pyranone derivatives. J. Phys. Chem. A 110(26), 8144–8150 (2006)CrossRefGoogle Scholar
  18. 18.
    Jamorski Jödicke, C., Lüthi, H.P.: Time-dependent density functional theory (TDDFT) study of the excited charge-transfer state formation of a series of aromatic donor-acceptor systems. J. Am. Chem. Soc. 125(1), 252–264 (2003)CrossRefGoogle Scholar
  19. 19.
    Cossi, M., Barone, V.: Time-dependent density functional theory for molecules in liquid solutions. J. Chem. Phys. 115(10), 4708–4717 (2001)CrossRefGoogle Scholar
  20. 20.
    Adamo, C., Barone, V.: A TDDFT study of the electronic spectrum of S-tetrazine in the gas-phase and in aqueous solution. Chem. Phys. Lett. 330(1–2), 152–160 (2000)CrossRefGoogle Scholar
  21. 21.
    Adam, W., Krebs, O.: The nitroso ene reaction: a regioselective and stereoselective allylic nitrogen functionalization of mechanistic delight and synthetic potential. Chem. Rev. 103(10), 4131–4146 (2003)CrossRefGoogle Scholar
  22. 22.
    Baerends, E.J., Ricciardi, G., Rosa, A., van Gisbergen, S.J.A.: A DFT/TDDFT interpretation of the ground and excited states of porphyrin and porphyrazine complexes. Coord. Chem. Rev. 230(1–2), 5–27 (2002)CrossRefGoogle Scholar
  23. 23.
    Casida, M.E.: Jacob’s ladder for time-dependent density-functional theory: some rungs on the way to photochemical heaven. In: Low-Lying Potential Energy Surfaces. American Chemical Society, Washington, DC, pp. 199–220 (2009)Google Scholar
  24. 24.
    Bañuelos Prieto, J.: Theoretical study of the ground and excited electronic states of pyrromethene 546 laser dye and related compounds. Chem. Phys. 296(1), 13–22 (2004)CrossRefGoogle Scholar
  25. 25.
    Bertolino, C.A., Ferrari, A.M., Barolo, C., Viscardi, G., Caputo, G., Coluccia, S.: Solvent effect on indocyanine dyes: a computational approach. Chem. Phys. 330(1–2), 52–59 (2006)CrossRefGoogle Scholar
  26. 26.
    Rohrdanz, M.A., Herbert, J.M.: Simultaneous benchmarking of ground- and excited-state properties with long-range-corrected density functional theory. J. Chem. Phys. 129(3), 034107–10 (2008)CrossRefGoogle Scholar
  27. 27.
    Peach, M.J.G., Benfield, P., Helgaker, T., Tozer, D.J.: Excitation energies in density functional theory: an evaluation and a diagnostic test. J. Chem. Phys. 128(4), 044118–9 (2008)CrossRefGoogle Scholar
  28. 28.
    Chiba, B., Tsuneda, T., Hirao, K.: Excited state geometry optimizations by analytical energy gradient of long-range corrected time-dependent density functional theory. J. Chem. Phys. 124(14), 144106–12 (2006)CrossRefGoogle Scholar
  29. 29.
    Kamiya, M., Sekino, H., Tsuneda, T., Hirao, K.: Nonlinear optical property calculations by the long-range-corrected coupled-perturbed Kohn–Sham method. J. Chem. Phys. 122(23), 234111–11 (2005)CrossRefGoogle Scholar
  30. 30.
    Tawada, Y., Tsuneda, T., Yanagisawa, S., Yanai, T., Hirao, K.: A long-range-corrected time-dependent density functional theory. J. Chem. Phys. 120(18), 8425–8433 (2004)CrossRefGoogle Scholar
  31. 31.
    Jacquemin, D., Wathelet, V., Perpète, E.A., Adamo, C.: Extensive TD-DFT benchmark: singlet-excited states of organic molecules. J. Chem. Theory Comput. 5(9), 2420–2435 (2009)CrossRefGoogle Scholar
  32. 32.
    Cherepy, N.J., Smestad, G.P., Grätzel, M., Zhang, J.Z.: Ultrafast electron injection: implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO\(_2\) nanocrystalline electrode. J. Phys. Chem. B 101(45), 9342–9351 (1997)CrossRefGoogle Scholar
  33. 33.
    Knorr, F.J., McHale, J.L., Clark, A.E., Marchioro, A., Moser, J.E.: Dynamics of interfacial electron transfer from betanin to nanocrystalline TiO\(_2\): the pursuit of two-electron injection. J. Phys. Chem. C 119(33), 19030–19041 (2015)CrossRefGoogle Scholar
  34. 34.
    Matthews, D., Infelta, P., Grätzel, M.: Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes. Sol. Energy Mater. Sol. Cells 44(2), 119–155 (1996)CrossRefGoogle Scholar
  35. 35.
    Akın, S., Açıkgöz, S., Gülen, M., Akyürek, C., Sönmezoğlu, S.: Investigation of the photoinduced electron injection processes for natural dye-sensitized solar cells: the impact of anchoring groups. RSC Adv. 6, 85125–85134 (2016)CrossRefGoogle Scholar
  36. 36.
    Jacquemin, D., Perpète, E.A., Scalmani, G., Frisch, M.J., Kobayashi, R., Adamo, C.: Assessment of the efficiency of long-range corrected functionals for some properties of large compounds. J. Chem. Phys. 126(14), 144105–13 (2007)CrossRefGoogle Scholar
  37. 37.
    Marcus, R.: Electron transfer reactions in chemistry: theory and experiment (nobel lecture). Angew. Chem. Int. Ed. 32, 1111–1121 (1993)CrossRefGoogle Scholar
  38. 38.
    Preat, J.: Photoinduced energy-transfer and electron-transfer processes in dye-sensitized solar cells: TDDFT insights for triphenylamine dyes. J. Phys. Chem. C 114(39), 16716–16725 (2010)CrossRefGoogle Scholar
  39. 39.
    Pourtois, G., Beljonne, D., Cornil, J., Ratner, M.A., Brédas, J.L.: Photoinduced electron-transfer processes along molecular wires based on phenylenevinylene oligomers: a quantum-chemical insight. J. Am. Chem. Soc. 124(16), 4436–4447 (2002)CrossRefGoogle Scholar
  40. 40.
    Fitri, A., Benjelloun, A.T., Benzakour, M., Mcharfi, M., Hamidi, M., Bouachrine, M.: Theoretical design of thiazolothiazole-based organic dyes with different electron donors for dye-sensitized solar cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 132(C), 232–238 (2014)CrossRefGoogle Scholar
  41. 41.
    Ding, W.L., Wang, D.M., Geng, Z.Y., Zhao, X.L., Xu, W.B.: Density functional theory characterization and verification of high-performance indoline dyes with D-A-\(\pi\)-A architecture for dye-sensitized solar cells. Dyes Pigments 98(1), 125–135 (2013)CrossRefGoogle Scholar
  42. 42.
    Hsu, C.P.: The electronic couplings in electron transfer and excitation energy transfer. Acc. Chem. Res. 42(4), 509–518 (2009)CrossRefGoogle Scholar
  43. 43.
    Katoh, R., Furube, A., Yoshihara, T., Hara, K., Fujihashi, G., Takano, S., Murata, S., Arakawa, H., Tachiya, M.: Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO\(_2\), TiO\(_2\), ZnO, Nb\(_2\)O\(_5\), SnO\(_2\), In\(_2\)O\(_3\)) films. J. Phys. Chem. B 108(15), 4818–4822 (2004)CrossRefGoogle Scholar
  44. 44.
    Zhang, C.R., Liu, L., Zhe, J.W., Jin, N.Z., Ma, Y., Yuan, L.H., Zhang, M.L., Wu, Y.Z., Liu, Z.J., Chen, H.S.: The role of the conjugate bridge in electronic structures and related properties of tetrahydroquinoline for dye sensitized solar cells. Int. J. Mol. Sci. 14(3), 5461–5481 (2013)CrossRefGoogle Scholar
  45. 45.
    Fan, W.: Incorporation of thiadiazole derivatives as \(\pi\)-spacer to construct efficient metal-free organic dye sensitizers for dye-sensitized solar cells: a theoretical study. Commun. Comput. Chem. 1, 152–170 (2013)CrossRefGoogle Scholar
  46. 46.
    Tian, H., Yang, X., Pan, J., Chen, R., Liu, M., Zhang, Q., Hagfeldt, A., Sun, L.: A triphenylamine dye model for the study of intramolecular energy transfer and charge transfer in dye-sensitized solar cells. Adv. Funct. Mater. 18(21), 3461–3468 (2008)CrossRefGoogle Scholar
  47. 47.
    Zhang, Z., Zou, L., Ren, A., Liu, Y., Feng, J., Sun, C.: Theoretical studies on the electronic structures and optical properties of star-shaped triazatruxene/heterofluorene copolymers. Dyes Pigments 96, 349–363 (2013)CrossRefGoogle Scholar
  48. 48.
    Sang-aroon, W., Saekow, S., Amornkitbamrung, V.: Density functional theory study on the electronic structure of monascus dyes as photosensitizer for dye-sensitized solar cells. J. Photochem. Photobiol. A Chem. 236, 35–40 (2012)CrossRefGoogle Scholar
  49. 49.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09 Revision E.01, Gaussian Inc., Wallingford CT (2009)Google Scholar
  50. 50.
    Peverati, R., Truhlar, D.G.: Screened-exchange density functionals with broad accuracy for chemistry and solid-state physics. Phys. Chem. Chem. Phys. 14(47), 16187–16191 (2012)CrossRefGoogle Scholar
  51. 51.
    Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A.: Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72(1), 650–654 (1980)CrossRefGoogle Scholar
  52. 52.
    Kim, B., Chung, K., Kim, J.: Molecular design principle of all-organic dyes for dye-sensitized solar cells. Chem. A Eur. J. 19, 5220–5230 (2013)CrossRefGoogle Scholar
  53. 53.
    Zhu, W., Wu, Y., Wang, S., Li, W., Li, X., Chen, J., Wang, Z.S., Tian, H.: Organic D-A-\(\pi\)-A solar cell sensitizers with improved stability and spectral response. Adv. Funct. Mater. 21(4), 756–763 (2011)CrossRefGoogle Scholar
  54. 54.
    Lakshmanakumar, M., Sriram, S., Balamurugan, D.: Performance analysis of TiO\(_2\)-flavylium compound-based dye-sensitized solar cell (DSSC): a DFT-TDDFT approach. J. Comput. Electron. 17, 1143–1152 (2018)CrossRefGoogle Scholar
  55. 55.
    Jin, X., Li, D., Sun, L., Wang, C.L., Bai, F.Q.: Theoretical design of porphyrin sensitizers with different acceptors for application in dye-sensitized solar cells. RSC Adv. 8, 19804–19810 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Aanuoluwapo Raphael Obasuyi
    • 1
  • Daniel Glossman-Mitnik
    • 1
  • Norma Flores-Holguín
    • 1
    Email author
  1. 1.Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y EnergíaCentro de Investigación en Materiales AvanzadosChihuahuaMexico

Personalised recommendations