Advertisement

Journal of Computational Electronics

, Volume 18, Issue 2, pp 712–721 | Cite as

Spatial-frequency coding metasurfaces to regulate energy radiation of terahertz waves

  • Ri-Hui Xiong
  • Jiu-Sheng LiEmail author
  • Jian-Quan Yao
Article
  • 114 Downloads

Abstract

Conventional coding metasurfaces only consider the different phase responses and encode the spatial-domain parameter, whereas the phase sensitivity of the frequency-domain parameter is not considered. When traditional digital metasurfaces are used to control terahertz waves, they have fixed functions once the coding sequence has been determined. To address this shortcoming, a windmill-shaped structure is adopted herein to construct spatial-frequency coding metasurfaces that take into account not only the initial phase response parameter but also the frequency-domain parameter in the terahertz band. Using such a metasurface, the energy radiation of terahertz wave can be manipulated by only changing the working frequency without redesigning the structure of the coding metasurface. The physical phenomena are confirmed by numerical simulations with 1-bit and 2-bit periodic as well as nonperiodic spatial-frequency coding metasurfaces.

Keywords

Spatial-frequency coding metasurfaces Terahertz wave Radar cross-section Polarization insensitive 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 61871355, 61831012).

References

  1. 1.
    Siegel, P.H.: Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004)CrossRefGoogle Scholar
  2. 2.
    Federici, J.F., Schulkin, B., Huang, F., Gary, D., Barat, R., Oliveira, F., Zimdars, D.: THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol. 20(7), s266–s280 (2005)CrossRefGoogle Scholar
  3. 3.
    Tonouchi, M.: Cutting-edge THz technology. Nat. Photonics 1(2), 97–105 (2007)CrossRefGoogle Scholar
  4. 4.
    Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184 (2000)CrossRefGoogle Scholar
  5. 5.
    Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)CrossRefGoogle Scholar
  6. 6.
    Li, Z., Yao, K., Xia, F., Shen, S., Tian, J., Liu, Y.: Graphene plasmonic metasurfaces to steer infrared light. Sci. Rep. 5, 12423 (2015)CrossRefGoogle Scholar
  7. 7.
    Su, Z., Zhao, Q., Song, K., Zhao, X., Yin, J.: Electrically tunable metasurface based on Mie-type dielectric resonators. Sci. Rep. 7, 43026 (2017)CrossRefGoogle Scholar
  8. 8.
    Zhang, Y., Feng, Y.J., Zhao, J.M., Jiang, T., Zhu, B.: Terahertz beam switching by electrical control of graphene-enabled tunable metasurface. Sci. Rep. 7, 14147 (2017)CrossRefGoogle Scholar
  9. 9.
    Hu, D., Moreno, G., Wang, X.K., He, J.W., Chahadih, A., Xie, Z.W., Wang, B., Akalin, T., Zhang, Y.: Dispersion characteristic of ultrathin terahertz planar lenses based on metasurface. Opt. Commun. 322, 164–168 (2014)CrossRefGoogle Scholar
  10. 10.
    Wang, B.X., Zhai, X., Wang, G.Z., Huang, W.Q., Wang, L.L.: Design of a four-band and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics J. 7(1), 1–8 (2015)Google Scholar
  11. 11.
    Chen, H.T., Padilla, W.J., Cich, M.J., Azad, A.K., Averitt, R.D., Taylor, A.J.: A metamaterial solid-state terahertz phase modulator. Nat. Photonics 3(3), 148–151 (2009)CrossRefGoogle Scholar
  12. 12.
    Unlu, M., Hashemi, M.R., Berry, C.W., Li, S., Yang, S.H., Jarrahi, M.: Switchable scattering meta-surfaces for broadband terahertz modulation. Sci. Rep. 4, 5708 (2014)CrossRefGoogle Scholar
  13. 13.
    Hussain, N., Parka, I.: Design of a wide-gain-bandwidth metasurface antenna at terahertz frequency. AIP Adv. 7, 055313 (2017)CrossRefGoogle Scholar
  14. 14.
    Cui, T.J., Qi, M.Q., Wan, X., Zhao, J., Cheng, Q.: Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218 (2014)CrossRefGoogle Scholar
  15. 15.
    Liang, L.J., Wei, M.G., Yan, X., Wei, D.Q., Liang, D.C., Han, J.G., Ding, X., Zhang, G.Y., Yao, J.Q.: Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies. Sci. Rep. 6, 39252 (2016)CrossRefGoogle Scholar
  16. 16.
    Li, J.S., Zhao, Z.J., Yao, J.Q.: Flexible manipulation of terahertz wave reflection using polarization insensitive coding metasurfaces. Opt. Express 25(24), 29983–29992 (2017)CrossRefGoogle Scholar
  17. 17.
    Dong, D.S., Yang, J., Cheng, Q., Zhao, J., Gao, L.H., Ma, S.J., Liu, S., Chen, H.B., He, Q., Liu, W.W., Fang, Z.Y., Zhou, L., Cui, T.J.: Terahertz broadband low-reflection metasurface by controlling phase distributions. Adv. Opt. Mater. 3, 1405–1410 (2015)CrossRefGoogle Scholar
  18. 18.
    Wu, H.T., Liu, S., Wan, X., Zhang, L., Wang, D., Li, L.L., Cui, T.J.: Controlling energy radiations of electromagnetic waves via frequency coding metamaterials. Adv. Sci. 4(9), 1700098 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for THz ResearchChina Jiliang UniversityHangzhouChina
  2. 2.College of Precision Instrument and Opto-Electronics EngineeringTianjin UniversityTianjinChina

Personalised recommendations