1 Tb/s all-optical XOR and AND gates using quantum-dot semiconductor optical amplifier-based turbo-switched Mach–Zehnder interferometer

  • Amer KotbEmail author
  • Kyriakos E. Zoiros
  • Chunlei GuoEmail author


The turbo-switch (TS) architecture conceived for speeding up the response of conventional semiconductor optical amplifiers (SOAs) is combined for the first time with the exceptional ultrafast capability of quantum-dot (QD) SOAs. The possibility of exploiting this combination in the Mach–Zehnder interferometer (MZI) for implementing fundamental all-optical (AO) XOR and AND logic gates run at 1 Tb/s is numerically investigated, assessed, and verified. The simulation results demonstrate the superiority of the QDSOA-based TS-MZI scheme over its QDSOA-based MZI counterpart, as quantified by the improved quality factor, which can be achieved under more favorable operating conditions. The outcomes of the conducted theoretical treatment can help execute AO signal processing tasks with enhanced performance while keeping pace with the perpetual increase of single-channel data rates in an efficient and affordable manner.


All-optical XOR gate All-optical AND gate Quantum-dot semiconductor optical amplifier Turbo-switch Mach–Zehnder interferometer 



This work was funded by the Chinese Academy of Sciences President’s International Fellowship Initiative (Grant No. 2019FYT0002) and Talented Young Scientist Program supported by the China Science and Technology Exchange Center of Ministry of Science and Technology of China.


  1. 1.
    Berrettini, G., Malacarne, A., Prati, G.: OTDM-based optical communications networks at 160 Gbit/s and beyond. Opt. Fiber Technol. 13, 1–12 (2007)CrossRefGoogle Scholar
  2. 2.
    Mulvad, H.C.H., Galili, M., Oxenløwe, L.K., Hu, H., Clausen, A.T., Lensen, J.B., Peucheret, C., Jeppesen, P.: Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel. Opt. Express 18, 1438–1443 (2010)CrossRefGoogle Scholar
  3. 3.
    Willner, A.E., Khaleghi, S., Chitgarha, M.R., Yilmaz, O.F.: All-optical signal processing. J. Lightwave Technol. 32, 660–680 (2014)CrossRefGoogle Scholar
  4. 4.
    Singh, S., Kaur, R., Kaler, R.S.: Photonic processing for all-optical logic gates based on semiconductor optical amplifiers. Opt. Eng. 53, 116102 (2014)CrossRefGoogle Scholar
  5. 5.
    Zhang, X., Li, W., Hu, H., Dutta, N.K.: High-speed all-optical encryption and decryption based on two-photon absorption in semiconductor optical amplifiers. Opt. Commun. Netw. 7, 276–285 (2015)CrossRefGoogle Scholar
  6. 6.
    Thapa, S., Zhang, X., Dutta, N.K.: Effects of two-photon absorption on pseudo-random bit sequence operating at high speed. J. Mod. Opt. 66, 100–108 (2019)CrossRefGoogle Scholar
  7. 7.
    Zoiros, K.E.: Special issue on applications of semiconductor optical amplifiers. Appl. Sci. 8, 1185 (2018)CrossRefGoogle Scholar
  8. 8.
    Mørk, J., Nielsen, M.L., Berg, T.W.: The dynamics of semiconductor optical amplifiers: modeling and applications. Opt. Photon. News 14, 42–48 (2003)CrossRefGoogle Scholar
  9. 9.
    Manning, R.J., Yang, X., Webb, R.P., Giller, R., Gunning, F.C.G., Ellis, A.D.: The ‘turbo-switch’—a novel technique to increase the high-speed response of SOAs for wavelength conversion. In: Proceedings of Optical Fiber Communication Conference, 2006. Art. No. 1636676 (2006)Google Scholar
  10. 10.
    Manning, R.J., Giller, R., Yang, X., Webb, R.P., Cotter, D.: Faster switching with semiconductor optical amplifiers. In: Proceedings of Photonics in Switching 2007, pp. 145–146. Art. No. 4300786 (2007)Google Scholar
  11. 11.
    Nielsen, M., Mørk, J.: Bandwidth enhancement of SOA-based switches using optical filtering: theory and experimental verification. Opt. Express 14, 1260–1265 (2006)CrossRefGoogle Scholar
  12. 12.
    Weng, Q., Yang, X., Hu, W.: Theoretical analysis of high-speed all-optical turbo-switches. IEEE J. Sel. Top. Quantum Electron. 18, 662–669 (2012)CrossRefGoogle Scholar
  13. 13.
    Zhou, P., Yang, X., Hu, X., Hu, W.: Bandwidth analysis of all-optical turbo-switch. Opt. Commun. 334, 105–109 (2015)CrossRefGoogle Scholar
  14. 14.
    Reid, D.A., Clarke, A.M., Yang, X., Maher, R., Webb, R.P., Manning, R.J., Barry, L.P.: Characterization of a turbo-switch SOA wavelength converter using spectrographic pulse measurement. IEEE J. Sel. Top. Quantum Electron. 14, 841–848 (2008)CrossRefGoogle Scholar
  15. 15.
    Yang, X., Mishra, A.K., Manning, R.J., Giller, R.: All-optical 40 Gbit/s NRZ to RZ format conversion by nonlinear polarisation rotation in SOAs. Electron. Lett. 43, 469–470 (2007)CrossRefGoogle Scholar
  16. 16.
    Yang, X., Weng, Q., Hu, W.: High-speed, all-optical XOR gates using semiconductor optical amplifiers in ultrafast nonlinear interferometers. Front. Optoelectron. China 3, 245–252 (2010)CrossRefGoogle Scholar
  17. 17.
    Gutiérrez-Castrejón, R.: Turbo-switched Mach-Zehnder interferometer as all-optical signal processing element at 160 Gb/s. Opt. Commun. 282, 4345–4352 (2009)CrossRefGoogle Scholar
  18. 18.
    Rendón-Salgado, I., Gutiérrez-Castrejón, R.: 160 Gb/s all-optical AND gate using bulk SOA turbo-switched Mach–Zehnder interferometer. Opt. Commun. 399, 77–86 (2017)CrossRefGoogle Scholar
  19. 19.
    Rendón-Salgado, I., Ramírez-Cruz, E., Gutiérrez-Castrejón, R.: 640 Gb/s all-optical AND gate and wavelength converter using bulk SOA turbo-switched Mach–Zehnder interferometer with improved differential scheme. Opt. Laser Technol. 109, 671–681 (2019)CrossRefGoogle Scholar
  20. 20.
    Schreieck, R.P., Kwakernaak, M.H., Jäckel, H., Melchior, H.: All-optical switching at multi-100-Gb/s data rates with Mach–Zehnder interferometer switches. IEEE J. Quantum Electron. 38, 1053–1061 (2002)CrossRefGoogle Scholar
  21. 21.
    Sugawara, M., Akiyama, T., Hatori, N., Nakata, Y., Ebe, H., Ishikawa, H.: Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gbps-1 and a new scheme of 3R regenerators. Meas. Sci. Technol. 13, 1683–1691 (2002)CrossRefGoogle Scholar
  22. 22.
    Berg, T.W., Mørk, J.: Saturation and noise properties of quantum-dot optical amplifiers. IEEE J. Quantum Electron. 40, 1527–1539 (2004)CrossRefGoogle Scholar
  23. 23.
    Akiyama, T., Ekawa, M., Sugawara, M., Kawaguchi, K., Sudo, H., Kuramata, A., Ebe, H., Arakawa, Y.: An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum-dots. IEEE Photon. Technol. Lett. 17, 1614–1616 (2005)CrossRefGoogle Scholar
  24. 24.
    Yasuoka, N., Kawaguchi, K., Ebe, H., Akiyama, T., Ekawa, M., Morito, K., Sugawara, M., Arakawa, Y.: Quantum-dot semiconductor optical amplifiers with polarization-independent gains in 1.5-μm wavelength bands. IEEE Photon. Technol. Lett. 20, 1908–1910 (2008)CrossRefGoogle Scholar
  25. 25.
    Zilkie, A.J., Meier, J., Mojahedi, M., Poole, P.J., Barrios, P., Poitras, D., Rotter, T.J., Yang, C., Stintz, A., Malloy, K.J., Smith, P.W.E., Aitchison, J.S.: Carrier dynamics of quantum-dot, quantum-dash and quantum-well semiconductor optical amplifiers operating at 1.55 μm. IEEE J. Quantum Electron. 43, 982–991 (2007)CrossRefGoogle Scholar
  26. 26.
    Ben-Ezra, Y., Lembrikov, B.I., Haridim, M.: Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 45, 34–41 (2009)CrossRefGoogle Scholar
  27. 27.
    Ma, S., Chen, Z., Sun, H., Dutta, N.K.: High-speed all-optical logic gates based on quantum-dot semiconductor optical amplifiers. Opt. Express 18, 6417–6422 (2010)CrossRefGoogle Scholar
  28. 28.
    Rostami, A., Nejad, H., Qartavol, R., Saghai, H.: Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 46, 354–360 (2010)CrossRefGoogle Scholar
  29. 29.
    Dimitriadou, E., Zoiros, K.E.: All-optical XOR gate using single quantum-dot SOA and optical filter. J. Lightwave Technol. 31, 3813–3821 (2013)CrossRefGoogle Scholar
  30. 30.
    Dimitriadou, E., Zoiros, K.E.: On the feasibility of 320 Gb/s all-optical AND gate using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. PIERS B 50, 113–140 (2013)CrossRefGoogle Scholar
  31. 31.
    Kotb, A., Zoiros, K.E.: 1 Tb/s high-quality factor NAND gate using quantum-dot semiconductor optical amplifiers in Mach–Zehnder interferometer. J. Comput. Electron. 13, 555–561 (2014)CrossRefGoogle Scholar
  32. 32.
    Zhang, X., Dutta, N.K.: Effects of two-photon absorption on all-optical logic operation based on quantum-dot semiconductor optical amplifiers. J. Mod. Opt. 65, 166–173 (2018)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Hu, H., Zhang, X., Zhao, S.: High-speed all-optical logic gate using QD-SOA and its application. Cogent Phys. 4, 1388156 (2018)Google Scholar
  34. 34.
    Li, W., Hu, H., Zhang, X., Dutta, N.K.: High speed all optical logic gates using binary phase shift keyed signal based on QD-SOA. Inter. J. High Speed Electron. Syst. 24, 1550005 (2015)CrossRefGoogle Scholar
  35. 35.
    Pato, S.V., Meleiro, R., Fonseca, D., André, P., Monteiro, P., Silva, H.: All-optical burst-mode power equalizer based on cascaded SOAs for 10-Gb/s EPONs. IEEE Photon. Technol. Lett. 20, 2078–2080 (2008)CrossRefGoogle Scholar
  36. 36.
    Ueno, Y., Nakamura, S., Tajima, K.: Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40–160-GHz range for use in ultrahigh-speed all-optical signal processing. J. Opt. Soc. Am. B 19, 2573–2589 (2002)CrossRefGoogle Scholar
  37. 37.
    Dutta, N.K., Wang, Q.: Semiconductor optical amplifiers, 2nd edn. World Scientific Publishing Company, Singapore (2013)CrossRefGoogle Scholar
  38. 38.
    Cassioli, D., Scotti, S., Mecozzi, A.: A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers. IEEE J. Quantum Electron. 36, 1072–1080 (2000)CrossRefGoogle Scholar
  39. 39.
    Schares, L., Schubert, C., Schmidt, C., Weber, H.G., Occhi, L., Guekos, L.: Phase dynamics of semiconductor optical amplifiers at 10 to 40 GHz. IEEE J. Quantum Electron. 39, 1394–1408 (2003)CrossRefGoogle Scholar
  40. 40.
    Komatsu, K., Hosoya, G., Yashima, H.: All-optical logic NOR gate using a single quantum-dot SOA-assisted an optical filter. Opt. Quantum Electron. 50, 131 (2018)CrossRefGoogle Scholar
  41. 41.
    Xu, J., Zhang, X., Mørk, J.: Investigation of patterning effects in ultrafast SOA-based optical switches. IEEE J. Quantum Electron. 46, 87–94 (2010)CrossRefGoogle Scholar
  42. 42.
    Agrawal, G.P., Olsson, N.A.: Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum Electron. 25, 2297–2306 (1989)CrossRefGoogle Scholar
  43. 43.
    Yariv, A.: Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron. Lett. 36, 321–322 (2000)CrossRefGoogle Scholar
  44. 44.
    Rizou, Z.V., Zoiros, K.E., Hatziefremidis, A.: Comparison of basic notch filters for semiconductor optical amplifier pattern effect mitigation. Appl. Sci. 7, 783 (2017)CrossRefGoogle Scholar
  45. 45.
    Matera, F., Settembre, M.: Role of Q-factor and of time jitter in the performance evaluation of optically amplified transmission systems. IEEE J. Sel. Top. Quantum Electron. 6, 308–316 (2000)CrossRefGoogle Scholar
  46. 46.
    Zoiros, K.E., Papadopoulos, G., Houbavlis, T., Kanellos, G.T.: Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted Sagnac interferometer. Opt. Commun. 258, 114–134 (2006)CrossRefGoogle Scholar
  47. 47.
    Dimitriadou, E., Zoiros, K.E.: On the feasibility of ultrafast all-optical NAND gate using single quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. Opt. Laser Technol. 44, 1971–1981 (2012)CrossRefGoogle Scholar
  48. 48.
    Leuthold, J., Besse, P.A., Eckner, J., Gamper, E., Dulk, M., Melchior, H.: All-optical space switches with gain and principally ideal extinction ratios. IEEE J. Quantum Electron. 34, 622–633 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Guo China-US Photonics Laboratory, Changchun Institute of Optics, Fine Mechanics, and PhysicsChinese Academy of SciencesChangchunChina
  2. 2.Department of Physics, Faculty of ScienceUniversity of FayoumFayoumEgypt
  3. 3.Lightwave Communications Research Group, Department of Electrical and Computer Engineering, School of EngineeringDemocritus University of ThraceXanthiGreece
  4. 4.The Institute of OpticsUniversity of RochesterRochesterUSA

Personalised recommendations