Spin–orbit coupling effects on the electronic structure of two-dimensional silicon carbide

  • Md. Rasidul Islam
  • Md. Sherajul IslamEmail author
  • Naim Ferdous
  • Khalid N. Anindya
  • Akihiro Hashimoto


Two-dimensional silicon carbide (2D-SiC) has attracted incredible research attention recently because of its wide bandgap and high exciton binding energy. Here, we focus on the effect of spin–orbit coupling (SOC) on its electronic structure through a detailed first-principles density functional theory study. The calculated electronic band structure and projected electron density of states indicate that Si 3p and C 2p electrons play a vital role in forming the electronic bandgap. The distribution of the real space charge density in the conduction and valence bands further confirms the electronic structure. It is found that inclusion of SOC causes splitting of both the valence and conduction bands. A wide SOC-induced bandgap of ~ 30 meV is observed in this novel material. Moreover, the effect of strain in modulating the bandgap and the SOC interaction is quantified. We find a linear reduction of both the normal and SOC-induced bandgap with increase of the biaxial tensile strain. Bandgap tuning based on such SOC effects may provide a pathway towards future optoelectronic and novel spintronic devices based on 2D-SiC.


Spin–orbit coupling Density functional theory Electronic structure 2D-SiC 



The authors are grateful to Abu Farzan Mitul of the University of New Mexico, Albuquerque, NM 87131-0001, USA and Md. Soyaeb Hasan of Khulna University of Engineering and Technology for valuable discussions during the writing of this paper. This work was supported by the use of the services and facilities of the UGC-funded research project (grant CASR-45/17/06, 2017–2018) provided by the Committee for Advanced Studies and Research (CASR) at Khulna University of Engineering and Technology, Khulna, Bangladesh.


  1. 1.
    Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)CrossRefGoogle Scholar
  2. 2.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)CrossRefGoogle Scholar
  3. 3.
    Wang, S., Ren, C., Tian, H., Yu, J., Sun, M.: MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photo catalyst: a first-principles study. Phys. Chem. Chem. Phys. 20(19), 13394–13399 (2018)CrossRefGoogle Scholar
  4. 4.
    Vandenberghe, W.G., Fischetti, M.V.: Imperfect two-dimensional topological insulator field-effect transistors. Nat. Commun. 8, 14184 (2017)CrossRefGoogle Scholar
  5. 5.
    Sun, M., Chou, J.P., Shi, L., Gao, J., Hu, A., Tang, W., Zhang, G.: Few-layer PdSe2 sheets: promising thermoelectric materials driven by high valley convergence. ACS Omega 3, 5971–5979 (2018)CrossRefGoogle Scholar
  6. 6.
    Mao, H., Yin, Z.: Electronic structure and spin dynamics of ACo2As2 (A = Ba, Sr, Ca). Phys. Rev. B 98, 115128 (2018)CrossRefGoogle Scholar
  7. 7.
    Sun, M., Chou, J.P., Gao, J., Cheng, Y., Hu, A., Tang, W., Zhang, G.: Exceptional optical absorption of buckled arsenene covering a broad spectral range by molecular doping. ACS Omega 3, 8514–8520 (2018)CrossRefGoogle Scholar
  8. 8.
    Cui, Z., Wang, X., Li, E., Ding, Y., Sun, C., Sun, M.: Alkali-metal-adsorbed g-GaN monolayer: ultralow work functions and optical properties. Nanoscale Res. Lett. 13, 207 (2018)CrossRefGoogle Scholar
  9. 9.
    Wang, S., Ren, C., Li, Y., Tian, H., Lu, W., Sun, M.: Spin and valley filter across line defect in silicene. Appl. Phys. Exp. 11, 053004 (2018)CrossRefGoogle Scholar
  10. 10.
    Hsueh, H.C., Guo, G.Y., Louie, S.G.: Excitonic effects in the optical properties of a SiC sheet and nanotubes. Phys. Rev. B Condens. Mater. Phys. 84, 404–408 (2011)Google Scholar
  11. 11.
    Lin, X., Lin, S., Xu, Y., Hakro, A.A., Hasan, T., Zhang, B., Yu, B., Luo, J., Liad, E., Chena, H.: Ab initio study of electronic and optical behavior of two dimensional silicon carbide. J. Mater. Chem. C 1, 2131–2135 (2013)CrossRefGoogle Scholar
  12. 12.
    Fortin, E., Fafard, S., Mysyrowicz, A.: Exciton transport in Cu2O: evidence for excitonic superfluidity. Phys. Rev. Lett. 70, 3951–3952 (1993)CrossRefGoogle Scholar
  13. 13.
    Lin, S.S.: Light-emitting two-dimensional ultrathin silicon carbide. J. Phys. Chem. C 116, 3951–3955 (2012)CrossRefGoogle Scholar
  14. 14.
    Li, S., Sun, M., Chou, J.P., Wei, J., Xing, H., Hu, A.: First-principles calculation of electronic properties of SiC-based bilayer and trilayer heterostructures. Phys. Chem. Chem. Phys. 20, 24726–24734 (2018)CrossRefGoogle Scholar
  15. 15.
    Pens, G., Ciobanu, F., Frank, T., Krieger, M., Reshavon, S., Schmid, F., Weidner, M.: SiC material properties. Int. J. High Speed Electron. Syst. 15(4), 705–745 (2005)CrossRefGoogle Scholar
  16. 16.
    Morkoc, H., Strite, S., Gao, G.B., Lin, M.E., Sverdlov, B., Burns, M.: Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor. J. Appl. Phys. 76(3), 1363–1398 (1994)CrossRefGoogle Scholar
  17. 17.
    Lin, S., Zhang, S., Li, X., Xu, W., Pi, X., Liu, X., Wang, E., Wu, H., Chen, H.: Quasi-two-dimensional SiC and SiC2: interaction of silicon and carbon at atomic thin lattice plane. J. Phys. Chem. C 119, 19772–19779 (2015)CrossRefGoogle Scholar
  18. 18.
    Elliott, R.J.: Theory of the effect of spin–orbit coupling on magnetic resonance in some semiconductors. Phys. Rev. 96(2), 266–279 (1954)CrossRefzbMATHGoogle Scholar
  19. 19.
    Minaev, B.F., Knuts, S., Agren, H.: On the interpretation of the external heavy atom effect on singlet-triplet transitions. Chem. Phys. 181, 15–28 (1994)CrossRefGoogle Scholar
  20. 20.
    Weinberg, M., Staarmann, C., Ölschläger, C., Simonet, J., Sengstock, K.: Breaking inversion symmetry in a state-dependent honeycomb lattice: artificial graphene with tunable band gap. 2D Mater. 3, 024005 (2016)CrossRefGoogle Scholar
  21. 21.
    Chow, P.C., Liu, L.: Relativistic effects on the electronic band structure of compound semiconductors. Phys. Rev. 140, 1817–1826 (1965)CrossRefGoogle Scholar
  22. 22.
    Bernevig, B.A., Zhang, S.C.: Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006)CrossRefGoogle Scholar
  23. 23.
    Žutić, I., Fabian, J., Sarma, S.D.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004)CrossRefGoogle Scholar
  24. 24.
    Singh, R.: Spin–orbit splitting in graphene, silicene and germanene: dependence on buckling. Int. J. Mod. Phys. B 32, 1850055 (2017)CrossRefGoogle Scholar
  25. 25.
    Yao, Y., Ye, F., Qi, X.L., Zhang, S.C., Fang, Z.: Spin–orbit gap of graphene: first-principles calculations. Phys. Rev. B 75, 041401 (2007)CrossRefGoogle Scholar
  26. 26.
    Liu, C.C., Feng, W., Yao, Y.: Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107, 076802 (2011)CrossRefGoogle Scholar
  27. 27.
    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G., Cococcioni, M., Dabo, I.: Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009)CrossRefGoogle Scholar
  28. 28.
    Vanderbilt, D.: Soft self-consistent pseudo-potentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7897 (1990)CrossRefGoogle Scholar
  29. 29.
    Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5053 (1981)CrossRefGoogle Scholar
  30. 30.
    Baroni, S., Gironcoli, S.D., Corso, A.D., Giannozzi, P.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–520 (2001)CrossRefGoogle Scholar
  31. 31.
    Foldy, L.L., Wouthuysen, S.A.: On the Dirac theory of spin 1/2 particles and its non-relativistic limit. Phys. Rev. B 78, 29 (1950)CrossRefzbMATHGoogle Scholar
  32. 32.
    Shi, Z., Zhang, Z., Kutana, A., Yakobson, B.I.: Predicting two dimensional silicon carbide monolayers. ACS Nano 9, 9802–9809 (2015)CrossRefGoogle Scholar
  33. 33.
    Susi, T., Skakalov, V., Mittelberger, A., Kotrusz, P., Hulman, M., Pennycook, T.J., Mangler, C., Kotakoski, J., Meyer, J.C.: Computational insights and the observation of SiC nanograin assembly: towards 2D silicon carbide. Sci. Rep. 7, 4399 (2017)CrossRefGoogle Scholar
  34. 34.
    Lee, J., Tian, W.C., Wang, W.L., Yao, D.X.: Electronic structure and band gap engineering of two-dimensional octagon-nitrogene. Sci. Rep. 8, 1674 (2018)CrossRefGoogle Scholar
  35. 35.
    Liu, C.C., Jiang, H., Yao, Y.: Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 84, 1–11 (2011)Google Scholar
  36. 36.
    Xiao, D., Liu, G.B., Feng, W., Xu, X., Yao, W.: Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012)CrossRefGoogle Scholar
  37. 37.
    Winkler, R.: Spin orbit coupling effects in two dimensional electron and hole systems. STMP 91, 8 (2003)Google Scholar
  38. 38.
    Desai, S.B., Seol, G., Kang, J.S., Fang, H., Battaglia, C., Kapadia, R., Ager, J.W., Guo, J., Javey, A.: Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 14, 4592–4597 (2014)CrossRefGoogle Scholar
  39. 39.
    Jena, N., Dimple, Behere, S.D., Sarkar, A.D.: Strain induced optimization of nanoelectromechanical energy harvesting and nanopiezotronic response in MoS2 monolayer nanosheet. J. Phys. Chem. C 121(17), 9181–9190 (2017)CrossRefGoogle Scholar
  40. 40.
    Yun, W.S., Han, S.W., Hong, S.C., Kim, I.G., Lee, J.D.: Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX 2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 85(3), 033305 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringKhulna University of Engineering and TechnologyKhulnaBangladesh
  2. 2.Graduate School of EngineeringUniversity of FukuiFukuiJapan

Personalised recommendations