Advertisement

Optimal design of a 5.5-GHz low-power high-gain CMOS LNA using the flower pollination algorithm

  • Sumalya Ghosh
  • Bishnu Prasad DeEmail author
  • R. Kar
  • D. Mandal
  • A. K. Mal
Article
  • 4 Downloads

Abstract

The design of a low-power, high-gain, highly linear complementary metal–oxide–semiconductor (CMOS) cascode low-noise amplifier (LNA) with an inductive source degeneration circuit for use at 5.5 GHz frequency is optimized using a flower pollination algorithm (FPA) as an evolutionary technique. The FPA is applied to optimize the noise figure (NF) while validating all the design constraints, e.g., on the gain, power dissipation, linearity, stability, and input and output matching. Optimal sizing of the MOS transistors present in the LNA circuit is achieved by using the FPA. Moreover, the FPA helps to estimate the optimal values of the other elements in the LNA circuit. The FPA-based optimal design parameters are used to implement the CMOS LNA circuit in CADENCE IC 6.1.6 software at the UMC 180-nm technology node with a supply voltage of 1.8 V. The designed LNA achieves an input third-order intercept point (IIP3) of 1.77 dBm, power dissipation of 4.29 mW, NF of 0.686 dB, and gain of 24.42 dB at 5.5 GHz. The FPA-based optimal design for the CMOS cascode LNA yields remarkably improved results compared with those in previous literature in terms of the gain, noise figure, power dissipation, and area.

Keywords

CMOS RF Integrated circuit optimization FPA Low-power LNA Noise figure (NF) Stability 

Notes

References

  1. 1.
    Lee, T.H., Samavati, H., Rategh, H.R.: 5-GHz CMOS wireless LANs. IEEE Trans. Microw. Theory Tech. 50(1), 268–280 (2002).  https://doi.org/10.1109/22.981280 CrossRefGoogle Scholar
  2. 2.
    Shams, M., Rashedi, E., Hakimi, A.: Clustered-gravitational search algorithm and its application in parameter optimization of a low noise amplifier. Appl. Math. Comput. 258, 436–453 (2015).  https://doi.org/10.1016/j.amc.2015.02.020 MathSciNetzbMATHGoogle Scholar
  3. 3.
    Kumar, R., Rajan, A., Talukdar, F.A., Dey, N., Santhi, V., Balas, V.E.: Optimization of 5.5-GHz CMOS LNA parameters using firefly algorithm. Neural Comput. Appl. 28(12), 3765–3779 (2017).  https://doi.org/10.1007/s00521-016-2267-y CrossRefGoogle Scholar
  4. 4.
    Mallick, S., Akhil, J.R., Dasgupta, A., Kar, R., Mandal, D., Ghoshal, S.P.: Optimal design of 5.5 GHz CMOS LNA using hybrid fitness based adaptive DE with PSO. In: 5th International Electrical Engineering Congress (iEECON), pp. 1–4 (2017).  https://doi.org/10.1109/IEECON.2017.8075890
  5. 5.
    Kumar, R., Talukdar, F.A., Rajan, A., Devi, A., Raja, R.: Parameter optimization of 5.5 GHz low noise amplifier using multi-objective Firefly Algorithm. Microsyst. Technol. (2018).  https://doi.org/10.1007/s00542-018-4034-8 Google Scholar
  6. 6.
    Li, Y.: A simulation-based evolutionary approach to LNA circuit design optimization. Appl. Math. Comput. 209(1), 57–67 (2009).  https://doi.org/10.1016/j.amc.2008.06.015 MathSciNetzbMATHGoogle Scholar
  7. 7.
    Pandey, S., Gawande, T., Pathak, A., Kondekar, P.N.: A 0.9-V, 4.4-mW CMOS LNA with wideband input match and high gain for UWB applications. Int. J. Lett. 6(3), 329–337 (2018).  https://doi.org/10.1080/21681724.2017.1378373 CrossRefGoogle Scholar
  8. 8.
    Oh, N.J.: A low-power switchable dual-band CMOS LNA for 802.11 a/b/g WLAN applications. IETE J. Res. 57(6), 563–567 (2011).  https://doi.org/10.4103/0377-2063.92273 CrossRefGoogle Scholar
  9. 9.
    Lee, M., Kwon, I.: A 3–10 GHz noise-cancelling CMOS LNA using gm—boosting technique. IET Circuits Devices Syst. 12(1), 12–16 (2018).  https://doi.org/10.1049/iet-cds.2017.0094 CrossRefGoogle Scholar
  10. 10.
    Khurram, M., SMR, S.M.R.: A 3–5 GHz current-reuse gm-boosted CG LNA for ultrawideband in 130 nm CMOS. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(3), 400–409 (2012).  https://doi.org/10.1109/TVLSI.2011.2106229 CrossRefGoogle Scholar
  11. 11.
    Chang, C.P., Chen, J.H., Wang, Y.H.: A fully integrated 5 GHz low-voltage LNA using forward body bias technology. IEEE Microw. Wirel. Compon. Lett. 19(3), 176–178 (2009)CrossRefGoogle Scholar
  12. 12.
    Liu, B., Wang, C., Ma, M., Guo, S.: An ultra-low-voltage and ultra-low-power 2.4 GHz LNA design. Radioengineering 18(4), 527–531 (2009)Google Scholar
  13. 13.
    Jafarnejad, R., Jannesari, A., Nabavi, A., Sahafi, A.: A low power low noise amplifier employing negative feedback and current reuse techniques. Microelectron. J. 49, 49–56 (2016).  https://doi.org/10.1016/j.mejo.2015.12.011 CrossRefGoogle Scholar
  14. 14.
    Wan, Q., Wang, C.: Design of 3.1–10.6 GHz ultra-wideband CMOS low noise amplifier with current-reuse technique. Int. J. Electron. Commun. (AEÜ) 65(12), 1006–1011 (2011).  https://doi.org/10.1016/j.aeue.2011.03.016 CrossRefGoogle Scholar
  15. 15.
    Hayati, M., Cheraghaliei, S., Zarghami, S.: Design of UWB low noise amplifier using noise-cancelling and current-reused techniques. Integr. VLSI J. 60, 232–239 (2018).  https://doi.org/10.1016/j.vlsi.2017.10.002 CrossRefGoogle Scholar
  16. 16.
    Kumar, R., Devi, A., Sarkar, A., Talukdar, F.A.: Design of 5.5 GHz linear low noise amplifier using the post-distortion technique with body biasing. Microsyst. Technol. 22(11), 2681–2690 (2016).  https://doi.org/10.1007/s00542-015-2556-x CrossRefGoogle Scholar
  17. 17.
    Zokaei, A., Amirabadi, A.: A 65 nm linear broad-band differential low noise amplifier using the post-distortion technique. Microelectron. J. 74, 24–33 (2018).  https://doi.org/10.1016/j.mejo.2018.01.007 CrossRefGoogle Scholar
  18. 18.
    Chang, C., Chen, J., Hung, S., Su, C., Wang, Y.: A novel post-linearization technique for fully integrated 5.5 GHz high-linearity LNA. In: 2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC), pp. 577–580 (2009).  https://doi.org/10.1109/ICICIC.2009.40
  19. 19.
    Seyedhosseinzadeh, N., Nabavi, A.: A highly linear CMOS low noise amplifier for K-band applications. Int. J. Electron. 101(12), 1607–1620 (2014).  https://doi.org/10.1080/00207217.2014.888775 CrossRefGoogle Scholar
  20. 20.
    Jafarnejad, R., Jannesari, A., Sobhi, J.: A linear ultra wide band low noise amplifier using pre-distortion technique. Int. J. Electron. Commun. (AEÜ) 79, 172–183 (2017)CrossRefGoogle Scholar
  21. 21.
    Jafarnejad, R., Jannesari, A., Sobhi, J.: Pre-distortion technique to improve linearity of low noise amplifier. Microelectron. J. 61, 95–105 (2017)CrossRefGoogle Scholar
  22. 22.
    Jadhav, V.P., Mali, M.B.: A 2.4 GHz low power, high gain CMOS RF LNA in 90 nm technology. Int. J. Eng. Res. Technol. 3, 581–583 (2014)CrossRefGoogle Scholar
  23. 23.
    Lee, T.H.: The Design of CMOS Radio-Frequency Integrated Circuits, 2nd edn. Cambridge University Press, Cambridge (2004)Google Scholar
  24. 24.
    Andreani, P., Sjoland, H.: Noise optimization of an inductively degenerated CMOS low noise amplifier. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 48(9), 835–841 (2001).  https://doi.org/10.1109/82.964996 CrossRefGoogle Scholar
  25. 25.
    Ziel, A.V.: Noise in solid-state devices and lasers. Proc. IEEE 58(8), 1178–1206 (1970)CrossRefGoogle Scholar
  26. 26.
    Hoe, D.H.K., Jin, X.: The design of low noise amplifiers in deep submicron CMOS processes: a convex optimization approach. VLSI Des. (2015).  https://doi.org/10.1155/2015/312639 MathSciNetGoogle Scholar
  27. 27.
    Wang, S., Huang, B.Z.: A high-gain CMOS LNA for 2.4/5.2-GHz WLAN applications. Prog. Electromagn. Res. 21, 155–167 (2011)CrossRefGoogle Scholar
  28. 28.
    Mahata, S., Saha, S.K., Kar, R., Mandal, D.: Optimal design of fractional-order digital differentiator using flower pollination algorithm. J. Circuits Syst. Comput. 27(8), 1850129-1–1850129-35 (2018).  https://doi.org/10.1142/S0218126618501293 CrossRefGoogle Scholar
  29. 29.
    Ram, G., Kar, R., Mandal, D., Ghoshal, S.P.: Optimal design of linear antenna arrays of dipole elements using flower pollination algorithm. IETE J. Res. (2018).  https://doi.org/10.1080/03772063.2018.1452639 Google Scholar
  30. 30.
    Mahata, S., Saha, S.K., Kar, R., Mandal, D.: Optimal design of wideband digital integrators and differentiators using hybrid flower pollination algorithm. Soft. Comput. 22(11), 3757–3783 (2018).  https://doi.org/10.1007/s00500-017-2595-6 CrossRefGoogle Scholar
  31. 31.
    Yang, X.S.: Flower pollination algorithm for global optimization. Unconventional computation and natural computation. In: Durand-Lose, J., Jonoska, N. (eds) Unconventional Computation and Natural Computation. UCNC 2012. Lecture Notes in Computer Science, vol. 7445, pp. 240–249. Springer, Berlin (2012).  https://doi.org/10.1007/978-3-642-32894-7_27

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sumalya Ghosh
    • 1
  • Bishnu Prasad De
    • 2
    Email author
  • R. Kar
    • 1
  • D. Mandal
    • 1
  • A. K. Mal
    • 1
  1. 1.Department of Electronics and Communication EngineeringNIT DurgapurDurgapurIndia
  2. 2.School of Electronics EngineeringKIIT UniversityBhubaneswarIndia

Personalised recommendations