Advertisement

A scheme for the development of a trinary logic unit (TLU) using polarization-based optical switches

  • Sumana Mandal
  • Dhoumendra Mandal
  • Mrinal Kanti Mandal
  • Sisir Kumar GaraiEmail author
Article
  • 20 Downloads

Abstract

Frequency-encoded optical processors based on multivalued logic (MVL) will play a significant role in future all-optical networks. In this work, basic optical logic gates are designed using a modified trinary system, exploiting the switching action of semiconductor optical amplifiers (SOAs) based on the principle of the nonlinear rotation of the polarization of a probe beam in the presence of a pump beam. A control unit capable of performing OR, AND, and XOR logic operations depending on the frequency of the control signal is then developed. Finally, a trinary logic unit is designed to execute 27 different logic operations. The feasibility of these proposals is confirmed by simulation results. In this approach, each trinary bit, i.e., “trit,” is represented by a unique frequency, which in turn helps to address the noise margin problem that arises in intensity-encoded MVL systems. This scheme can therefore play an important role in errorless optical computing and processing.

Keywords

Multivalued logic Modified trinary number Trinary logic unit Semiconductor optical amplifier Polarization switch 

Notes

References

  1. 1.
    Hillerkuss, D., Schmogrow, R., Schellinger, T., Jordan, M., Winter, M., Huber, G., Vallaitis, T., Bonk, R., Kleinow, P., Frey, F.: 26 Tbits—1 Line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nat. Photon. 5, 364–371 (2011)CrossRefGoogle Scholar
  2. 2.
    Willner, A.E., Khaleghi, S., Chitgarha, M.R., Yilmaz, O.F.: All-optical signal processing. J. Lightwave Technol. 32, 660–680 (2014)CrossRefGoogle Scholar
  3. 3.
    Singh, K., Kaur, G.: Interferometric architectures based all-optical logic design methods and their implementations. Opt. Laser Technol. 69, 122–132 (2015)CrossRefGoogle Scholar
  4. 4.
    Willner, A.E., Khaleghi, S., Chitgarha, M.R., Yilmaz, O.F.: Optics and photonics: key enabling technologies. In: Proceedings of the IEEE, vol. 100, Special Centennial Issue, pp. 1604–1643, 13 May (2012)Google Scholar
  5. 5.
    Ghosh, A.K., Basuray, A.: Binary to modified trinary number system conversion and vice versa for optical super computing. Nat. Comput. 9, 917–934 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Datta, A.K., Basuray, A., Mukhopadhyay, S.: Arithmetic operations in optical computations using a modified trinary number system. Opt. Lett. 14, 426–428 (1989)CrossRefGoogle Scholar
  7. 7.
    Patel, V., Gurumurthy, K.S.: Arithmetic operation in multi-valued logic. Int. J. VLSICS 1(1), 21–32 (2010)CrossRefGoogle Scholar
  8. 8.
    Smith, K.C.: The prospects for multi-valued logic: a technology and applications view. IEEE Trans. Comput. 30(9), 619–634 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bhattacharya, A., Ghosh, A.K., Maity, G.K.: Implementation of quadruple valued flip-flops using CMOS and spatial light modulator-based Savart plate. Int. J. Nanoparticles 10(1–2), 141–164 (2018)CrossRefGoogle Scholar
  10. 10.
    Mandal, S., Mandal, D., Mandal, M.K., Garai, S.K.: Design of optical quaternary adder and subtractor using polarization switching. J. Opt. 48(3), 332–350 (2018)CrossRefGoogle Scholar
  11. 11.
    Ghosh, A.K., Bhattacharya, A., Raul, M., Basuray, A.: Trinary arithmetic and logic unit (TALU) using Savart plate and spatial light modulator (SLM) suitable for optical computation in multivalued logic. Opt. Laser Technol. 44, 1583–1592 (2012)CrossRefGoogle Scholar
  12. 12.
    Band, N.C., Trivedi, A.U.: Review on high performance quaternary arithmetic an logic unit in standard CMOS. Int. J. Recent Innov. Trends Comput. Commun. 2(12), 4176–4179 (2014)Google Scholar
  13. 13.
    Hurst, S.L.: Multiple-valued logic—its status and its future. IEEE Trans. Comput. C-30(12), 1160–1179 (1984)CrossRefGoogle Scholar
  14. 14.
    Shim, S., Park, S., Hong, S.: Design of advanced multiple-valued D-FF using Neuron-MOS. Int. J. Comput. Sci. Netw. Secur. 6(9B), 118–123 (2006)Google Scholar
  15. 15.
    Chattopadhyay, T.: All-optical symmetric ternary logic gate. Opt. Laser Techol. 42, 1014–1021 (2010)CrossRefGoogle Scholar
  16. 16.
    Iftekharuddin, K.M., Awwal, A.A.S., Chowdhury, A.M.: Characterization of intensity-coded multi-valued logic circuit implementation. Opt. Eng. 38(3), 508–513 (1999)CrossRefGoogle Scholar
  17. 17.
    Awwal, A.A.S., Karim, M.A., Cherri, A.K.: Polarization-encoded optical shadow-casting scheme: design of multi-output trinary combinational logic units. Appl. Opt. 26(22), 4814–4818 (1987)CrossRefGoogle Scholar
  18. 18.
    Taraphdar, C., Chattopadhyay, T., Roy, J.N.: Designing of an all-optical scheme for single input ternary logical operations. Optik 122, 33–36 (2011)CrossRefGoogle Scholar
  19. 19.
    Chattopadhyay, T.: Design of optical reconfigurable balanced ternary arithmetic logic unit using MEMS based design. Opt. Commun. 356, 123–135 (2015)CrossRefGoogle Scholar
  20. 20.
    Garai, S.K.: Novel method of designing all optical frequency-encoded Fredkin and Toffoli logic gates using semiconductor optical amplifiers. IET Optoelectron. 5(6), 247–254 (2011)CrossRefGoogle Scholar
  21. 21.
    Garai, S.K.: A scheme of developing frequency encoded tristate optical logic operations using semiconductor optical amplifier. J. Mod. Opt. 57(6), 419–428 (2010)CrossRefGoogle Scholar
  22. 22.
    Mandal, S., Mandal, D., Mandal, M.K., Garai, S.K.: A scheme of developing all-optical frequency encoded ternary half adder using polarization switch. In: The International Conference on Fiber Optics and Photonics 2016, OSA, 4–8 December, 2016, IIT Kanpur, India (2016).  https://doi.org/10.1364/photonics.2016.th3a.34
  23. 23.
    Kai, S., Ping, Y.: The symmetric MSD encoder for one-step adder of ternary optical computer. Opt. Commun. 372, 221–228 (2016)CrossRefGoogle Scholar
  24. 24.
    Dorren, H.J.S., Lenstra, D., Liu, Y., Hill, M.T., Khoe, G.: Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories. IEEE J. Quantum Electron. 39(1), 141–148 (2003)CrossRefGoogle Scholar
  25. 25.
    Dutta, N.K., Wang, Q.: Semiconductor Optical Amplifiers. World Scientific, Singapore (2006)CrossRefGoogle Scholar
  26. 26.
    Mandal, D., Mandal, S., Garai, S.K.: A new approach of developing all-optical two bit binary data multiplier. Opt. Laser Technol. 64, 292–301 (2014)CrossRefGoogle Scholar
  27. 27.
    Mandal, S., Mandal, D., Garai, S.K.: An all-optical method of developing data communication system with error detection circuit. Opt. Fibre Technol. 20(2), 120–129 (2014)CrossRefGoogle Scholar
  28. 28.
    Mandal, S., Mandal, D., Mandal, M.K., Garai, S.K.: Design of frequency-encoded data-based optical master-slave-JK flip-flop using polarization switch. Opt. Eng. 56(6), 066105 (2017)CrossRefGoogle Scholar
  29. 29.
    Yongjun, W., Xinyu, L., Qinghua, T., Lina, W., Xiangjun, X.: All-optical clocked flip-flops and random access memory cells using the nonlinear polarization rotation effect of low-polarization-dependent semiconductor optical amplifiers. Opt. Commun. 410, 846–854 (2018)CrossRefGoogle Scholar
  30. 30.
    Chen, X., Huo, L., Zhao, Z., Zhuang, L., Lou, C.: Study on 100-Gb/s reconfigurable all-optical logic gates using a single semiconductor optical amplifier. Opt. Express 24(26), 30245–30253 (2016)CrossRefGoogle Scholar
  31. 31.
    Zhang, L., Kang, I., Bhardwaj, A., Sauer, N., Cabot, S., Jaques, J., Nielson, D.T.: Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells. IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006)CrossRefGoogle Scholar
  32. 32.
    Girardin, F., Guekos, G., Houbavlis, A.: Gain recovery of bulk semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 10(6), 784–786 (1998)CrossRefGoogle Scholar
  33. 33.
    Manning, R.J., Davies, D.A.O.: Three-wavelength device for all-optical signal processing. Opt. Lett. 19(12), 889–891 (1994)CrossRefGoogle Scholar
  34. 34.
    Sugawara, M., Akiyama, T., Hatori, N., Nakata, Y., Ebe, H., Ishikawa, H.: Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb/s and a new scheme of 3R regenerators. Meas. Sci. Technol. 13(11), 1683–1691 (2002)CrossRefGoogle Scholar
  35. 35.
    Tajima, K.: All-Optical switch with switch-off time unrestricted by carrier lifetime. Jpn. J. Appl. Phys. 32(2), L1746–L1749 (1993)CrossRefGoogle Scholar
  36. 36.
    Leuthold, J., Marom, D.M., Cabot, S., Jaques, J., Ryf, R., Giles, C.R.: All-optical wavelength conversion using a pulse reformatting optical filter. IEEE J. Lightwave Technol. 22(01), 186–192 (2004)CrossRefGoogle Scholar
  37. 37.
    Wang, J., Marculescu, A., Li, J., Vorreau, P., Tzadok, S., Ezra, S.B., Tsadka, S., Freude, W., Leuthold, J.: Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion. IEEE Photon. Technol. Lett. 19(24), 1955–1957 (2007)CrossRefGoogle Scholar
  38. 38.
    Yang, X., Weng, Q., Hu, W.: High speed all optical switches based on cascaded SOAs. In: Garai, S.K. (ed.) Selected Topics on Optical Amplifiers in Present Scenario, pp. 25–46. InTech, London (2012). ISBN: 978-953-51-0391-2.Google Scholar
  39. 39.
    Garai, S.K.: All-optical quaternary logic gates—an extension of binary logic gates. Opt. Laser Technol. 67, 125–136 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sumana Mandal
    • 1
  • Dhoumendra Mandal
    • 2
  • Mrinal Kanti Mandal
    • 1
  • Sisir Kumar Garai
    • 3
    Email author
  1. 1.Department of PhysicsNIT DurgapurDurgapurIndia
  2. 2.Department of PhysicsSaldiha CollegeSaldiha, BankuraIndia
  3. 3.Department of PhysicsM.U.C. Women’s CollegeBurdwanIndia

Personalised recommendations