Journal of Computational Electronics

, Volume 18, Issue 2, pp 680–688 | Cite as

Computational and experimental analysis of a low-profile, isolation-enhanced, band-notch UWB-MIMO antenna

  • Ankan BhattacharyaEmail author
  • Bappadittya Roy
  • Santosh K. Chowdhury
  • Anup K. Bhattacharjee


This paper presents a low-profile, isolation-enhanced, multiple-input multiple-output (MIMO) antenna with a band-notch feature. The MIMO structure comprises two fractal-shaped slotted radiating elements along with a defected ground structure. Arlon AR600 is used as the substrate material. The frequency notch is obtained by etching a split-ring rectangular resonating structure into the surface of the radiating elements. An impedance bandwidth of 3.0–11.1 GHz is obtained along with a band-notch feature centered at exactly 3.5 GHz. The analysis of the frequency- and time-domain response of the proposed structure gives satisfactory results, and good agreement is observed between the simulated and measured data. The simple design and compactness along with the incorporated band-notch feature justify the applicability of the presented antenna in the ultra-wideband communication domain.


Ultra-wideband communication Fractal geometry Defected ground structure Band-notch characteristic 



The authors gratefully acknowledge the help received from Dr. Pranab Paul of Microline India, Kolkata, for providing the facilities for antenna fabrication and measurement.


  1. 1.
    Federal Communication Commission (FCC): Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems. First report and order, ET Docket 98-153, FCC 02-48, adopted: Feb. 2002, released in April 2002 (2002)Google Scholar
  2. 2.
    Foschini, G., Gans, M.: On limits of wireless communications in a fading environment when using multiple antennas. Wirel. Pers. Commun. 6, 311–335 (1998)CrossRefGoogle Scholar
  3. 3.
    Liu, L., Zhao, H., See, T., Chen, Z.: A printed ultra-wideband diversity antenna. In: Proceedings of IEEE International Conference on Ultra Wideband Communication, pp. 2351–2356 (2006)Google Scholar
  4. 4.
    Wong, K., Su, S., Kuo, Y.: A printed ultra-wideband diversity monopole antenna. Microw. Opt. Technol. Lett. 38, 257–259 (2003)CrossRefGoogle Scholar
  5. 5.
    See, T., Swee, A., Chen, Z.: Correlation analysis of UWB MIMO antenna system configurations. In: Proceedings of IEEE International Conference on Ultra Wideband, pp. 105–108 (2008)Google Scholar
  6. 6.
    Hong, S., Lee, J., Choi, J.: Design of UWB diversity antenna for PDA applications. In: Proceedings of 11th International Conference on Advanced Communication Technology, pp. 583–585 (2008)Google Scholar
  7. 7.
    Chen, Y., Lu, W., Cheng, G., Cao, W., Li, Y.: Printed diversity antenna with cross shape stub for ultra-wideband applications. In: Proceedings of 11th IEEE International Conference on Communication Systems, pp. 813–816 (2008)Google Scholar
  8. 8.
    Bhattacharya, A.: An analytical approach to study the behavior of defected patch structures. In: Sengupta, S., Das, K., Khan, G. (eds.) Emerging Trends in Computing and Communication, Lecture Notes in Electrical Engineering, vol. 298, pp. 431–433. Springer, New Delhi (2014)CrossRefGoogle Scholar
  9. 9.
    Roy, B., Bhattacharya, A., Chowdhury, S.K., Bhattacharjee, A.K.: Wideband snowflake slot antenna using Koch iteration technique for wireless and C-band applications. AEU Int. J. Electron. Commun. 70, 1467–1472 (2016)CrossRefGoogle Scholar
  10. 10.
    Caloz, C., Okabe, H., Iwai, T., Itoh, T.: A simple and accurate model for microstrip structures with slotted ground plane. IEEE Microw. Wirel. Compon. Lett. 14, 133–135 (2004)CrossRefGoogle Scholar
  11. 11.
    Rajkumar, S., Selvan, K., Rao, P.H.: Compact 2-port fractal monopole MIMO antenna with polarization diversity and high isolation. In: IEEE Applied Electromagnetics Conference (AEMC), Guwahati. pp. 1–2 (2015)Google Scholar
  12. 12.
    Peristerianos, A., Theopoulos, A., Koutinos, A., Kaifas, T., Siakavara, K.: Dual-band fractal semi-printed element antenna arrays for MIMO applications. IEEE Antennas Wirel. Propag. Lett. 15, 730–733 (2016)CrossRefGoogle Scholar
  13. 13.
    Rajkumar, S., Selvan, K., Rao, P.: Compact two-element UWB fractal monopole MIMO antenna using T-shaped reflecting stub for high isolation. In: IEEE MTT-S International Microwave and RF Conference (IMaRC), Hyderabad, pp. 348–351 (2015)Google Scholar
  14. 14.
    Wang, H., Shen, D., Guo, T., Zhang, X.,: A high isolation MIMO antenna used a fractal EBG structure. In: Proceedings of the International Symposium on Antennas and Propagation (ISAP), Nanjing, pp. 241–244 (2013)Google Scholar
  15. 15.
    Ahsan, Md, Islam, M., Ullah, M.: Computational and experimental analysis of high gain antenna for WLAN/WiMAX applications. J. Comput. Electron. 14, 634–641 (2015)CrossRefGoogle Scholar
  16. 16.
    Gianvittorio, J.P., Rahmat-Samii, Y.: Fractal geometry in antenna system design: miniaturized-multiband element, phased array and frequency selective surface design. In: International Conference on Microwave and Millimeter Wave Technology, pp. 508–511 (2002)Google Scholar
  17. 17.
    Kadir, M.F.A., Jaafar, A.S., Aziz, M.Z.A.A.: Sierpinski carpet fractal antenna. In: Asia-Pacific Conference on Applied Electromagnetics, Melaka, pp. 1–4 (2007)Google Scholar
  18. 18.
    Bhattacharya, A., Roy, B., Chowdhury, S.K., Bhattacharjee, A.K.: Design and analysis of a Koch snowflake fractal monopole antenna for wideband communication. Appl. Comput. Electromag. Soc. J. 32, 548–554 (2017)Google Scholar
  19. 19.
    Manimegalai, B., Raju, S., Abhaikumar, V.: A multifractal Cantor antenna for multiband wireless applications. IEEE Antennas Wirel. Propag. Lett. 8, 359–362 (2009)CrossRefGoogle Scholar
  20. 20.
    Kaur, N., Sivia, J.S., Kaur, M.: Design of modified Sierpinski gasket fractal antenna for C and X-band applications. In: IEEE 3rd International Conference on MOOCs, Innovation and Technology in Education (MITE), Amritsar, pp. 248–250 (2015)Google Scholar
  21. 21.
    Vinoy, K.J., Abraham, J.K., Varadan, V.K.,: Fractal dimension and frequency response of fractal shaped antennas. In: IEEE Antennas and Propagation Society International Symposium. 2003 Digest. Held in Conjunction with: USNC/CNC/URSI North American Radio Science Meeting (Cat. No. 03CH37450), Columbus, OH, vol. 4, pp. 222–225 (2003)Google Scholar
  22. 22.
    Ismahayati, A., Soh, P.J., Hadibah, R., Vandenbosch, G.A.E.: Design and analysis of a multiband Koch fractal monopole antenna. In: IEEE International RF and Microwave Conference, Seremban, Negeri Sembilan, pp. 58–62 (2011)Google Scholar
  23. 23.
    Werner, D.H., Werner, P.L.: Genetically engineered dual-band fractal antennas. In: IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in Conjunction with: USNC/URSI National Radio Science Meeting (Cat. No. 01CH37229), Boston, MA, vol. 3, pp. 628–631 (2001)Google Scholar
  24. 24.
    Hutchinson, J.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Werner, D., Ganguly, S.: An overview of fractal antenna engineering research. IEEE Antennas Propag. Mag. 45, 38–57 (2003)CrossRefGoogle Scholar
  26. 26.
    Vinoy, K.: Fractal shaped antenna elements for wideband and multiband wireless applications. Ph.D. dissertation, The Pennsylvania State University (2002)Google Scholar
  27. 27.
    Zhu, Z.W., Zhou, Z.L., Jia, B.G.: On the lower bound of the Hausdorff measure of the Koch curve. Acta Math. Sin. 19, 715–728 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Najam, A., Duroc, Y., Tedjini, S.: Multiple-input multiple-output antennas for ultra wideband communications. IntechOpen 10, 209–236 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringNational Institute of TechnologyDurgapurIndia
  2. 2.Department of Electronics and Communication EngineeringMallabhum Institute of TechnologyBishnupurIndia
  3. 3.Department of Electronics and Communication EngineeringMadanapalle Institute of Technology and ScienceMadanapalleIndia
  4. 4.Department of Electronics and Telecommunication EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations