A dual-channel surface plasmon resonance biosensor based on a photonic crystal fiber for multianalyte sensing
Article
First Online:
- 16 Downloads
Abstract
A dual-channel photonic crystal fiber sensor based on the surface plasmon resonance effect is proposed and numerically investigated. The proposed design consists of two concentric channels, with an external coating of gold (Au) on solid silica. Multiple analytes are analyzed based on two different modes operating in the first and second channel, and wavelength sensitivity of 1000 nm/RIU and 3750 nm/RIU respectively. The proposed sensor design could be used in various sensing applications, e.g., for chemicals, biochemicals, organics, and other lower-index liquids having refractive index in the range of 1.30–1.40.
Keywords
Confinement loss Photonic crystal fiber Refractive index Surface plasmon resonanceReferences
- 1.Wood, R.W.: XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Lond. Edinb. Dublin. Philos. Mag. J. Sci. 4(21), 396–402 (1902)CrossRefGoogle Scholar
- 2.Jorgenson, R.C., Yee, S.S.: A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators B Chem. 12(3), 213–220 (1993)CrossRefGoogle Scholar
- 3.Lee, B., Roh, S., Park, J.: Current status of micro-and nano-structured optical fiber sensors. Opt. Fiber Technol. 15(3), 209–221 (2009)CrossRefGoogle Scholar
- 4.Ashwell, G.J., Roberts, M.P.S.: Highly selective surface plasmon resonance sensor for NO2. Electron. Lett. 32(22), 2089–2091 (1996)CrossRefGoogle Scholar
- 5.Mouvet, C., Harris, R.D., Maciag, C., Luff, B.J., Wilkinson, J.S., Piehler, J., Brecht, A., Gauglitz, G., Abuknesha, R., Ismail, G.: Determination of simazine in water samples by waveguide surface plasmon resonance. Anal. Chim. Acta 338(1–2), 109–117 (1997)CrossRefGoogle Scholar
- 6.Nooke, A., Beck, U., Hertwig, A., Krause, A., Krüger, H., Lohse, V., Negendank, D., Steinbach, J.: On the application of gold based SPR sensors for the detection of hazardous gases. Sens. Actuators B Chem. 149(1), 194–198 (2010)CrossRefGoogle Scholar
- 7.Cheng, Y.-C., Wen-Kuan, S., Liou, J.-H.: Application of a liquid sensor based on surface plasma wave excitation to distinguish methyl alcohol from ethyl alcohol. Opt. Eng. 39(1), 311–314 (2000)CrossRefGoogle Scholar
- 8.Homola, J., Dostalek, J., Chen, S., Rasooly, A., Jiang, S., Yee, S.S.: Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk. Int. J. Food Microbiol. 75(1), 61–69 (2002)CrossRefGoogle Scholar
- 9.Cahill, C.P., Johnston, K.S., Yee, S.S.: A surface plasmon resonance sensor probe based on retro-reflection. Sens. Actuators B Chem. 45(2), 161–166 (1997)CrossRefGoogle Scholar
- 10.Homola, J.: Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008)CrossRefGoogle Scholar
- 11.Chung, J.W., Kim, S.D., Bernhardt, R., Pyun, J.C.: Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV). Sens. Actuators B Chem. 111, 416–422 (2005)CrossRefGoogle Scholar
- 12.Koubova, V., Brynda, E., Karasova, L., Škvor, J., Homola, J., Dostalek, J., Tobiška, P., Rošický, J.: Detection of foodborne pathogens using surface plasmon resonance biosensors. Sens. Actuators B Chem. 74(1), 100–105 (2001)CrossRefGoogle Scholar
- 13.Dash, J.N., Jha, R.: SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photonics Technol. Lett. 26(6), 595–598 (2014)CrossRefGoogle Scholar
- 14.Yang, X., Ying, L., Liu, B., Yao, J.: Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 12(2), 489–496 (2017)CrossRefGoogle Scholar
- 15.Rifat, A.A., Amouzad Mahdiraji, G., Chow, D.M., Shee, Y.G., Ahmed, R., Adikan, F.R.M.: Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15(5), 11499–11510 (2015)CrossRefGoogle Scholar
- 16.Gao, D., Guan, C., Wen, Y., Zhong, X., Yuan, L.: Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt. Commun. 313, 94–98 (2014)CrossRefGoogle Scholar
- 17.Fan, Z., Li, S., Liu, Q., An, G., Chen, H., Li, J., Chao, D., Li, H., Zi, J., Tian, W.: High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance. IEEE Photonics J. 7(3), 1–9 (2015)CrossRefGoogle Scholar
- 18.Wang, G., Li, S., An, G., Wang, X., Zhao, Y., Zhang, W., Chen, H.: Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance. Opt. Quant. Electron. 48(1), 46 (2016)CrossRefGoogle Scholar
- 19.An, G., Hao, X., Li, S., Yan, X., Zhang, X.: D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance. Appl. Opt. 56(24), 6988–6992 (2017)CrossRefGoogle Scholar
- 20.Chen, X., Xia, L., Li, C.: Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection. IEEE Photonics J. 10(1), 1–9 (2018)Google Scholar
- 21.Azzam, S.I., Hameed, M.F.O., Shehata, R.E.A., Heikal, A.M., Obayya, S.S.A.: Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt. Quant. Electron. 48(2), 1–11 (2016)CrossRefGoogle Scholar
- 22.Otupiri, R., Akowuah, E.K., Haxha, S.: Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications. Opt. Express 23(12), 15716–15727 (2015)CrossRefGoogle Scholar
- 23.Rifat, A.A., Mahdiraji, G.A., Sua, Y.M., Ahmed, R., Shee, Y.G., Mahamd Adikan, F.R.: Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt. Express 24(3), 2485–2495 (2016)CrossRefGoogle Scholar
- 24.Peng, W., Banerji, S., Kim, Y.-C., Booksh, K.S.: Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications. Opt. Lett. 30(22), 2988–2990 (2005)CrossRefGoogle Scholar
- 25.Lu, M., Peng, W., Liu, Q., Liu, Y., Li, L., Liang, Y., Masson, J.-F.: Dual channel multilayer-coated surface plasmon resonance sensor for dual refractive index range measurements. Opt. Express 25(8), 8563–8570 (2017)CrossRefGoogle Scholar
- 26.Li, L., Zhang, X., Liang, Y., Guang, J., Peng, W.: Dual-channel fiber surface plasmon resonance biological sensor based on a hybrid interrogation of intensity and wavelength modulation. J. Biomed. Optics 21(12), 127001 (2016)CrossRefGoogle Scholar
- 27.Sazio, P.J.A., Amezcua-Correa, A., Finlayson, C.E., Hayes, J.R., Scheidemantel, T.J., Baril, N.F., Jackson, B.R., et al.: Microstructured optical fibers as high-pressure microfluidic reactors. Science 311(5767), 1583–1586 (2006)CrossRefGoogle Scholar
- 28.Takeyasu, N., Tanaka, T., Kawata, S.: Metal deposition deep into microstructure by electroless plating. Jpn. J. Appl. Phys. 44(8L), L1134 (2005)CrossRefGoogle Scholar
- 29.Rifat, A.A., Ahmed, R., Yetisen, A.K., Butt, H., Sabouri, A., Amouzad Mahdiraji, G., Yun, S.H., Mahamd Adikan, F.R.: Photonic crystal fiber based plasmonic sensors. Sens. Actuators B Chem. 243, 311–325 (2016)CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019