Advertisement

A dual-channel surface plasmon resonance biosensor based on a photonic crystal fiber for multianalyte sensing

  • Veerpal Kaur
  • Surinder SinghEmail author
Article
  • 16 Downloads

Abstract

A dual-channel photonic crystal fiber sensor based on the surface plasmon resonance effect is proposed and numerically investigated. The proposed design consists of two concentric channels, with an external coating of gold (Au) on solid silica. Multiple analytes are analyzed based on two different modes operating in the first and second channel, and wavelength sensitivity of 1000 nm/RIU and 3750 nm/RIU respectively. The proposed sensor design could be used in various sensing applications, e.g., for chemicals, biochemicals, organics, and other lower-index liquids having refractive index in the range of 1.30–1.40.

Keywords

Confinement loss Photonic crystal fiber Refractive index Surface plasmon resonance 

References

  1. 1.
    Wood, R.W.: XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Lond. Edinb. Dublin. Philos. Mag. J. Sci. 4(21), 396–402 (1902)CrossRefGoogle Scholar
  2. 2.
    Jorgenson, R.C., Yee, S.S.: A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators B Chem. 12(3), 213–220 (1993)CrossRefGoogle Scholar
  3. 3.
    Lee, B., Roh, S., Park, J.: Current status of micro-and nano-structured optical fiber sensors. Opt. Fiber Technol. 15(3), 209–221 (2009)CrossRefGoogle Scholar
  4. 4.
    Ashwell, G.J., Roberts, M.P.S.: Highly selective surface plasmon resonance sensor for NO2. Electron. Lett. 32(22), 2089–2091 (1996)CrossRefGoogle Scholar
  5. 5.
    Mouvet, C., Harris, R.D., Maciag, C., Luff, B.J., Wilkinson, J.S., Piehler, J., Brecht, A., Gauglitz, G., Abuknesha, R., Ismail, G.: Determination of simazine in water samples by waveguide surface plasmon resonance. Anal. Chim. Acta 338(1–2), 109–117 (1997)CrossRefGoogle Scholar
  6. 6.
    Nooke, A., Beck, U., Hertwig, A., Krause, A., Krüger, H., Lohse, V., Negendank, D., Steinbach, J.: On the application of gold based SPR sensors for the detection of hazardous gases. Sens. Actuators B Chem. 149(1), 194–198 (2010)CrossRefGoogle Scholar
  7. 7.
    Cheng, Y.-C., Wen-Kuan, S., Liou, J.-H.: Application of a liquid sensor based on surface plasma wave excitation to distinguish methyl alcohol from ethyl alcohol. Opt. Eng. 39(1), 311–314 (2000)CrossRefGoogle Scholar
  8. 8.
    Homola, J., Dostalek, J., Chen, S., Rasooly, A., Jiang, S., Yee, S.S.: Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk. Int. J. Food Microbiol. 75(1), 61–69 (2002)CrossRefGoogle Scholar
  9. 9.
    Cahill, C.P., Johnston, K.S., Yee, S.S.: A surface plasmon resonance sensor probe based on retro-reflection. Sens. Actuators B Chem. 45(2), 161–166 (1997)CrossRefGoogle Scholar
  10. 10.
    Homola, J.: Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008)CrossRefGoogle Scholar
  11. 11.
    Chung, J.W., Kim, S.D., Bernhardt, R., Pyun, J.C.: Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV). Sens. Actuators B Chem. 111, 416–422 (2005)CrossRefGoogle Scholar
  12. 12.
    Koubova, V., Brynda, E., Karasova, L., Škvor, J., Homola, J., Dostalek, J., Tobiška, P., Rošický, J.: Detection of foodborne pathogens using surface plasmon resonance biosensors. Sens. Actuators B Chem. 74(1), 100–105 (2001)CrossRefGoogle Scholar
  13. 13.
    Dash, J.N., Jha, R.: SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photonics Technol. Lett. 26(6), 595–598 (2014)CrossRefGoogle Scholar
  14. 14.
    Yang, X., Ying, L., Liu, B., Yao, J.: Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 12(2), 489–496 (2017)CrossRefGoogle Scholar
  15. 15.
    Rifat, A.A., Amouzad Mahdiraji, G., Chow, D.M., Shee, Y.G., Ahmed, R., Adikan, F.R.M.: Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15(5), 11499–11510 (2015)CrossRefGoogle Scholar
  16. 16.
    Gao, D., Guan, C., Wen, Y., Zhong, X., Yuan, L.: Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt. Commun. 313, 94–98 (2014)CrossRefGoogle Scholar
  17. 17.
    Fan, Z., Li, S., Liu, Q., An, G., Chen, H., Li, J., Chao, D., Li, H., Zi, J., Tian, W.: High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance. IEEE Photonics J. 7(3), 1–9 (2015)CrossRefGoogle Scholar
  18. 18.
    Wang, G., Li, S., An, G., Wang, X., Zhao, Y., Zhang, W., Chen, H.: Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance. Opt. Quant. Electron. 48(1), 46 (2016)CrossRefGoogle Scholar
  19. 19.
    An, G., Hao, X., Li, S., Yan, X., Zhang, X.: D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance. Appl. Opt. 56(24), 6988–6992 (2017)CrossRefGoogle Scholar
  20. 20.
    Chen, X., Xia, L., Li, C.: Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection. IEEE Photonics J. 10(1), 1–9 (2018)Google Scholar
  21. 21.
    Azzam, S.I., Hameed, M.F.O., Shehata, R.E.A., Heikal, A.M., Obayya, S.S.A.: Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt. Quant. Electron. 48(2), 1–11 (2016)CrossRefGoogle Scholar
  22. 22.
    Otupiri, R., Akowuah, E.K., Haxha, S.: Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications. Opt. Express 23(12), 15716–15727 (2015)CrossRefGoogle Scholar
  23. 23.
    Rifat, A.A., Mahdiraji, G.A., Sua, Y.M., Ahmed, R., Shee, Y.G., Mahamd Adikan, F.R.: Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt. Express 24(3), 2485–2495 (2016)CrossRefGoogle Scholar
  24. 24.
    Peng, W., Banerji, S., Kim, Y.-C., Booksh, K.S.: Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications. Opt. Lett. 30(22), 2988–2990 (2005)CrossRefGoogle Scholar
  25. 25.
    Lu, M., Peng, W., Liu, Q., Liu, Y., Li, L., Liang, Y., Masson, J.-F.: Dual channel multilayer-coated surface plasmon resonance sensor for dual refractive index range measurements. Opt. Express 25(8), 8563–8570 (2017)CrossRefGoogle Scholar
  26. 26.
    Li, L., Zhang, X., Liang, Y., Guang, J., Peng, W.: Dual-channel fiber surface plasmon resonance biological sensor based on a hybrid interrogation of intensity and wavelength modulation. J. Biomed. Optics 21(12), 127001 (2016)CrossRefGoogle Scholar
  27. 27.
    Sazio, P.J.A., Amezcua-Correa, A., Finlayson, C.E., Hayes, J.R., Scheidemantel, T.J., Baril, N.F., Jackson, B.R., et al.: Microstructured optical fibers as high-pressure microfluidic reactors. Science 311(5767), 1583–1586 (2006)CrossRefGoogle Scholar
  28. 28.
    Takeyasu, N., Tanaka, T., Kawata, S.: Metal deposition deep into microstructure by electroless plating. Jpn. J. Appl. Phys. 44(8L), L1134 (2005)CrossRefGoogle Scholar
  29. 29.
    Rifat, A.A., Ahmed, R., Yetisen, A.K., Butt, H., Sabouri, A., Amouzad Mahdiraji, G., Yun, S.H., Mahamd Adikan, F.R.: Photonic crystal fiber based plasmonic sensors. Sens. Actuators B Chem. 243, 311–325 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringSant Longowal Institute of Engineering and TechnologyLongowal, SangrurIndia

Personalised recommendations