A novel 3D three/five-input majority-based full adder in nanomagnetic logic

  • Farnoosh Farzaneh
  • Faghih Mirzaee Reza 
  • Keivan NaviEmail author


In recent decades, complementary metal–oxide–semiconductor (CMOS) downscaling has faced some serious challenges such as undesired leakage current densities and high power dissipation. One of the most attractive and promising alternative technologies to CMOS is nanomagnetic logic (NML), which is based on nonvolatile ferromagnetic computing states. In this paper, a novel full adder cell is suggested by providing a feedback loop to a special multilayer nanomagnetic majority voter, which switches between three- and five-input majorities periodically. This solution also represents an example revealing the potential of NML for circuit designs that are not accessible using other technologies such as CMOS or quantum-dot cellular automata (QCA). This capability comes from the combination of a clocking system and the nonvolatile behavior of NML. The correct operation of the new full adder cell is verified using the MQCA Verilog library. Comparisons with other state-of-the-art full adders show significant improvements in terms of density and simplicity.


Nanomagnetic logic Full adder 3D design Feedback model Majority voter MQCA 


  1. 1.
    Anderson, N.G., Bhanja, S.: Field-Coupling Nanocomputing: Paradigms, Progress, and Perspectives. Springer, Berlin (2014)Google Scholar
  2. 2.
    Soares, T.R.B.S., Silva, I.F., Melo, L.G.C., Neto, O.P.V.: A new methodology for design and simulation of NML circuits. In: IEEE 7th Latin American Symp. on Circuits & Systems, pp. 259–262 (2016)Google Scholar
  3. 3.
    Niemier, M.T., Varga, E., Bernstein, G.H., Porod, W., Alam, M.T., Dingler, A., Orlov, A., Hu, X.S.: Shape engineering for controlled switching with nanomagnet logic. IEEE Trans. Nanotechnol. 11, 220–230 (2010)CrossRefGoogle Scholar
  4. 4.
    Cowburn, R.P., Welland, M.E.: Room temperature magnetic quantum cellular automata. Science 287, 1466–1468 (2000)CrossRefGoogle Scholar
  5. 5.
    Labrado, C., Thapliyal, H.: Design of a multilayer five-input majority gate and adder/subtractor circuit in NML computing. Electron. Lett. 52, 1618–1620 (2016)CrossRefGoogle Scholar
  6. 6.
    Csaba, G., Porod, W.: Behavior of nanomagnet logic in the presence of thermal noise. In: 14th Int. Workshop on Computational Electronics, pp. 1–4 (2010)Google Scholar
  7. 7.
    Navi, K., Moaiyeri, M.H., Mirzaee, R.F., Hashemipour, O., Nezhad, B.M.: Two new low-power full adders based on majority-not gates. Microelectron. J. 40, 126–130 (2009)CrossRefGoogle Scholar
  8. 8.
    Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46, 531–542 (2015)CrossRefGoogle Scholar
  9. 9.
    Sen, B., Rajoria, A., Sikdar, B.K.: Design of efficient full adder in quantum-dot cellular automata. Sci. World J., article ID 250802, 1–10 (2013)Google Scholar
  10. 10.
    Sayedsalehi, S., Moaiyeri, M.H., Navi, K.: Novel efficient adder circuits for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 8, 1769–1775 (2011)CrossRefGoogle Scholar
  11. 11.
    Mohammadyan, S., Angizi, S., Navi, K.: New fully single layer QCA full-adder cell based on feedback model. Int. J. High Perform. Syst. Archit. 5, 202–208 (2015)CrossRefGoogle Scholar
  12. 12.
    Labrado, C.: Exploration of majority logic based design for arithmetic circuits. M.Sc. Thesis, University of Kentucky (2017)Google Scholar
  13. 13.
    Das, J., Alam, S., Bhanja, S.: Low power magnetic quantum cellular automata realization using magnetic multi-layer structures. IEEE J. Emerg. Sel. Top. Circuits Syst. 1, 267–276 (2011)CrossRefGoogle Scholar
  14. 14.
    Das, J., Alam, S., Bhanja, S.: Ultra-low power hybrid CMOS-magnetic logic architecture. IEEE Trans. Circuits Syst. I 59, 2008–2016 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ottavi, M., Pontarelli, S., Salsano, A., Lombardi, F.: Modeling magnetic quantum-dot cellular automata by HDL. In: 11th IEEE Conf. on Nanotechnology, pp. 1139–1144 (2011)Google Scholar
  16. 16.
    Varga, E., Csaba, G., Bernstein, G.H., Porod, W.: Implementation of a nanomagnetic full adder circuit. In: 11th IEEE Conf. on Nanotechnology, pp. 1244–1247 (2011)Google Scholar
  17. 17.
    Cofano, M., Santoro, G., Vacca, M., Pala, D., Causapruno, G., Cairo, F., Turvani, G., Roch, M.R., Graziano, M., Zamboni, M.: Logic-in-memory: a nano magnet logic implementation. In: IEEE Computer Society Annual Symp. on VLSI, pp. 286–291 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Computer Science and EngineeringShahid Beheshti University, G.C.TehranIran
  2. 2.Department of Computer Engineering, Shahr-e-Qods BranchIslamic Azad UniversityTehranIran

Personalised recommendations