A nonlocal approach for semianalytical modeling of a heterojunction vertical surrounding-gate tunnel FET

  • Nidhal Abdelmalek
  • Fayçal DjeffalEmail author
  • Toufik Bentrcia


A semianalytical model based on a nonlocal approach is proposed for an undoped tunnel field-effect transistor (TFET) with a vertical surrounding-gate structure. The heterostructure band alignment is computed by applying the affinity rule on suitable potential expressions obtained from the two-dimensional (2-D) electrostatic solution for all device regions. The fringing field, doping-induced degeneracy, ambipolarity, and dual modulation effects are included with the aim of obtaining a large domain of validity. The core model is completed with expressions for the capacitance of the terminals and validated against numerical simulations obtained using ATLAS-2D software. An investigation of the types of band alignment and the impact of doping on the device performance is also conducted. The developed models could be implemented into commercial simulators to investigate circuits based on such multigate field-effect transistors (FETs).


Semianalytical model Surrounding gate Tunneling FET Heterojunction Nonlocal approach 


  1. 1.
    Mookerjea, S., et al: Experimental demonstration of 100 nm channel length In0.53Ga0.47As-based vertical inter-band tunnel field effect transistors (TFETs) for ultra low-power logic and SRAM applications. In: 2009 IEEE International Electron Devices Meeting (IEDM), pp. 1–3. IEEE (2009)Google Scholar
  2. 2.
    Dewey, G., et al.: Fabrication, characterization, and physics of III–V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing. In: IEEE International Electron Devices Meeting (IEDM), Washington, DC, pp. 785–788. (2011)Google Scholar
  3. 3.
    Knoch, J., Appenzeller, J.: Modeling of high-performance p-type III–V heterojunction tunnel FETs. IEEE Electron Device Lett. 31, 305–307 (2010)CrossRefGoogle Scholar
  4. 4.
    Verhulst, A.S., Vandenberghe, W.G., Maex, K., Groeseneken, G.: Boosting the on-current of a n-channel nanowire tunnel field-effect transistor by source material optimization. J. Appl. Phys. 104, 064514 (2008)CrossRefGoogle Scholar
  5. 5.
    Convertino, C., Zota, C.B., Schmid, H., Ionescu, A.M., Moselund, K.E.: III–V heterostructure tunnel field-effect transistor. J. Phys. Condens. Matter 30, 264005 (2018)CrossRefGoogle Scholar
  6. 6.
    De Michielis, L., et al.: Tunneling and occupancy probabilities: how do they affect tunnel-FET behavior? IEEE Electron Device Lett. 34, 726–728 (2013)CrossRefGoogle Scholar
  7. 7.
    Dong, Y., et al.: A compact model for double-gate heterojunction tunnel FETs. IEEE Trans. Electron Devices 63, 4506–4513 (2016)CrossRefGoogle Scholar
  8. 8.
    Jain, P., et al.: Band-to-band tunneling in Γ valley for Ge source lateral tunnel field effect transistor: thickness scaling. J. Appl. Phys. 122, 014502 (2017)CrossRefGoogle Scholar
  9. 9.
    Guan, Y., et al.: An analytical model of gate-all-around heterojunction tunneling FET. IEEE Trans. Electron Devices 65, 776–782 (2018)CrossRefGoogle Scholar
  10. 10.
    Penn State III–V Tunnel FET Model Manual.
  11. 11.
    Taur, Y., Wu, J., Min, J.: An analytic model for heterojunction tunnel FETs with exponential barrier. IEEE Trans. Electron Devices 62, 1399–1404 (2015)CrossRefGoogle Scholar
  12. 12.
    Min, J., Wu, J., Taur, Y.: Analysis of source doping effect in tunnel FETs with staggered bandgap. IEEE Electron Device Lett. 36, 1094–1096 (2015)CrossRefGoogle Scholar
  13. 13.
    Abdelmalek, N., Djeffal, F., Bentrcia, T.: Continuous semianalytical modeling of vertical surrounding-gate tunnel FET: analog/RF performance evaluation. J. Comput. Electron. 17, 724–735 (2018)CrossRefGoogle Scholar
  14. 14.
    ATLAS User Manual: Device Simulation Software (2012)Google Scholar
  15. 15.
    Anvarifard, M.K., Orouji, A.A.: Proper electrostatic modulation of electric field in a reliable nano-SOI with a developed channel. IEEE Trans. Electron Devices 65, 1653–1657 (2018)CrossRefGoogle Scholar
  16. 16.
    Anvarifard, M.K., Orouji, A.A.: Stopping electric field extension in a modified nanostructure based on SOI technology-A comprehensive numerical study. Superlattices Microstruct. 111, 206–220 (2017)CrossRefGoogle Scholar
  17. 17.
    Bardon, M.G., Neves, H.P., Puers, R., Hoof, C.V.: Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Trans. Electron Devices 57, 827–834 (2010)CrossRefGoogle Scholar
  18. 18.
    Vishnoi, R., Kumar, M.J.: A pseudo-2-D-analytical model of dual material gate all-around nanowire tunneling FET. IEEE Trans. Electron Devices 61, 2264–2270 (2014)CrossRefGoogle Scholar
  19. 19.
    Shen, C., et al.: A variational approach to the two-dimensional nonlinear Poisson’s equation for the modeling of tunneling transistors. IEEE Trans. Electron Devices 29, 1252–1255 (2008)CrossRefGoogle Scholar
  20. 20.
    Jazaeri, F.: Modeling junctionless metal-oxide-semiconductor field-effect transistor. Ph.D. dissertation, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland (2015)Google Scholar
  21. 21.
    Lin, S.C., Kuo, J.B.: Modeling the fringing electric field effect on the threshold voltage of FD SOI nMOS devices with the LDD/sidewall oxide spacer structure. IEEE Trans. Electron Devices 50, 2559–2564 (2003)CrossRefGoogle Scholar
  22. 22.
    Bansal, A., Paul, B.C., Roy, K.: An analytical fringe capacitance model for interconnects using conformal mapping. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25, 2765–2774 (2006)CrossRefGoogle Scholar
  23. 23.
    Plonsey, R., Collin, R.E.: Principles and Applications of Electromagnetic Fields. McGraw-Hill Book Company, New York (1961)Google Scholar
  24. 24.
    Anderson, R.L.: Experiments on Ge–GaAs heterojunction. Solid State Electron. 5, 341–344 (1962)CrossRefGoogle Scholar
  25. 25.
    Kane, E.O.: Zener tunneling in semiconductors. J. Phys. Chem. Solids 12, 181–188 (1960)CrossRefGoogle Scholar
  26. 26.
    Tanaka, S.: A unified theory of direct and indirect interband tunneling under a nonuniform electric field. Solid State Electron. 37, 1543–1552 (1994)CrossRefGoogle Scholar
  27. 27.
    Milnes, A.G., Feuct, D.L.: Heterojunctions and Metal Semiconductor Junctions. Academic, New York (1972)Google Scholar
  28. 28.
    Koswatta, S.O., Koester, S.J., Haensch, W.: On the possibility of obtaining MOSFET-like performance and sub-60-mV/dec swing in 1-D broken-gap tunnel transistors. IEEE Trans. Electron Devices 57, 3222–3230 (2010)CrossRefGoogle Scholar
  29. 29.
    Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095–2110 (2010)CrossRefGoogle Scholar
  30. 30.
    Rajamohanan, B.: Fabrication, characterization and physics of III–V tunneling field effect transistors for low power logic and RF applications. Ph.D. dissertation, Pennsylvania State University (2010)Google Scholar
  31. 31.
    Lundstrom, M.S., Schuelke, R.J.: Modeling semiconductor heterojunctions in equilibrium. Solid State Electron. 25, 683–691 (1982)CrossRefGoogle Scholar
  32. 32.
    Mookerjea, S., Krishnan, R., Datta, S., Narayanan, V.: On enhanced Miller capacitance effect in interband tunnel transistors. IEEE Electron Device Lett. 30, 1102–1104 (2009)CrossRefGoogle Scholar
  33. 33.
    Zhang, L., Lin, X., He, J., Chan, M.: An analytical charge model for double-gate tunnel FETs. IEEE Trans. Electron Devices 59, 3217–3223 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LEA, Department of ElectronicsUniversity Mostefa Benboulaid Batna-2BatnaAlgeria
  2. 2.LEPCM, Department of PhysicsUniversity of Batna-1BatnaAlgeria

Personalised recommendations