Analysis and design of a terahertz microstrip antenna based on a synthesized photonic bandgap substrate using BPSO

  • Mohamed Nasr Eddine TemmarEmail author
  • Abdesselam Hocini
  • Djamel Khedrouche
  • Mehdi Zamani


A microstrip patch antenna based on a synthesized photonic bandgap (PBG) substrate is designed and analyzed by using a technique based on the combination of an evolutionary heuristic optimization algorithm with the CST Microwave Studio simulator, which is based on the finite integral technique. The initial antenna is designed by analyzing air cylinders embedded in a thick silicon substrate, which has high relative permittivity. Then, to synthesize the PBG substrate, a binary particle swarm optimization (BPSO) algorithm is implemented in MATLAB to design a two-dimensional (2D) photonic crystal on a square lattice that improves the initially designed microstrip antenna. The unit cell is divided equally into many square pixels, each of which is filled with one of two dielectric materials, silicon or air, corresponding to a binary word consisting of the binary digits 0 and 1. Finally, the performance of the initial antenna is compared with the BPSO-optimized antenna using different merit functions. The results show remarkable improvements in terms of the return loss and fractional bandwidth. Both microstrip patch antennas based on the synthesized photonic crystal substrate achieve noticeable sidelobe suppression. Furthermore, the first design, which is a dual-band antenna, shows a return loss improvement of 5.39 %, while the fractional bandwidth of the second design is increased by 128 % (bandwidth of 128 GHz), compared with the initial antenna based on the air-hole PBG substrate. Both antennas maintain a gain close to 9.17 dB. Also, the results show that the obtained antennas have resonant frequencies around 0.65 THz, as required for next-generation wireless communication technology and other interesting applications.


Terahertz Microstrip antenna PBG BPSO Heuristic algorithm Silicon technology 



This work was supported by the Algerian Ministry of Higher Education and Scientific Research via funding through the PRFU Project No. A25N01UN280120180001.


  1. 1.
    Bueno, J., Murugesan, V., Karatsu, K., Thoen, D.J., Baselmans, J.J.A.: Ultrasensitive kilo-pixel imaging array of photon noise-limited kinetic inductance detectors over an octave of bandwidth for THz astronomy. J. Low Temp. Phys. 193(3–4), 96–102 (2018)CrossRefGoogle Scholar
  2. 2.
    Li, Z., Guan, L., Li, C., Radwan, A.: A secure intelligent spectrum control strategy for future THz mobile heterogeneous networks. IEEE Commun. Mag. 56(6), 116–123 (2018)CrossRefGoogle Scholar
  3. 3.
    Murate, K., Kawase, K.: Perspective: terahertz wave parametric generator and its applications. J. Appl. Phys. 124(16), 901 (2018)CrossRefGoogle Scholar
  4. 4.
    Wu, C., Miao, X., Zhao, K.: Identifying PM2.5 samples collected in different environment by using terahertz time-domain spectroscopy. Front. Optoelectron. 11(3), 256–260 (2018)CrossRefGoogle Scholar
  5. 5.
    Lee, K., Jeoung, K., Lee, D.K., Ji, Y.B., Seo, M., Huh, Y.-M., Oh, S.J.: Study of molecular structure change of d- and l-glucose by proton irradiation using terahertz spectroscopy. Infrared Phys. Technol. 93, 154–157 (2018)CrossRefGoogle Scholar
  6. 6.
    Zhang, H., Li, Z., Hu, F., Qin, B., Zhao, Y., Chen, T., Hu, C.: Sensitive distinction between herbs by terahertz spectroscopy and a metamaterial resonator. Spectrosc. Lett. 51(4), 174–178 (2018)CrossRefGoogle Scholar
  7. 7.
    Zhang, W., Tang, Y., Shi, A., Bao, L., Shen, Y., Shen, R., Ye, Y.: Recent developments in spectroscopic techniques for the detection of explosives. Materials 11(8), 1364 (2018)CrossRefGoogle Scholar
  8. 8.
    Jha, K.R., Singh, G.: Dual-band rectangular microstrip patch antenna at terahertz frequency for surveillance system. J. Comput. Electron. 9(1), 31–41 (2009)CrossRefGoogle Scholar
  9. 9.
    Akyildiz, I.F., Jornet, J.M., Han, C.: Terahertz band: next frontier for wireless communications. Phys. Commun. 12, 16–32 (2014)CrossRefGoogle Scholar
  10. 10.
    Federici, J., Moeller, L.: Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 107, 111101 (2010)CrossRefGoogle Scholar
  11. 11.
    Jha, K.R., Singh, G.: Analysis and design of rectangular microstrip antenna on two-layer substrate materials at terahertz frequency. J. Comput. Electron. 9(2), 68–78 (2010)CrossRefGoogle Scholar
  12. 12.
    Singh, M., Rai, J., Mrwaha, A.: Design of a triangular patch microstrip antenna on a substrate of photonic crystal material. Int. J. Comput. Appl. 96(8), 26–29 (2014)Google Scholar
  13. 13.
    Kim, H., Choe, W., Jeong, J.: A terahertz CMOS V-shaped patch antenna with defected ground structure. Sensors 18(8), 2432 (2018)CrossRefGoogle Scholar
  14. 14.
    Pozar, D.M.: Considerations for millimeter wave printed antennas. IEEE Trans. Antennas Propag. 31(5), 740–747 (1983)CrossRefGoogle Scholar
  15. 15.
    Sharma, A., Dwivedi, V.K., Singh, G.: THz rectangular microstrip patch antenna on multilayered substrate for advanced wireless communication systems. In: Progress in Electromagnetics Research Symposium, Beijing, China, pp. 627–631 (2009)Google Scholar
  16. 16.
    Wu, K., Cheng, Y.J., Djerafi, T., Hong, W.: Substrate-integrated millimeter-wave and terahertz antenna technology. Proc. IEEE 100(7), 2219–2232 (2012)CrossRefGoogle Scholar
  17. 17.
    Bala, R., Marwaha, A.: Analysis of graphene based triangular nano patch antenna using photonic crystal as substrate for wireless applications. In: 2nd International Conference on Recent Advances in Engineering and Computational Sciences (RAECS) (2015)Google Scholar
  18. 18.
    Yang, G.M., Jin, R.H., Xiao, G.B., Vittoria, C., Harris, V.G., Sun, N.X.: Ultra wideband (UWB) antennas with multi-resonant splitring loops. IEEE Trans. Antennas Propag. 57(1), 256–260 (2009)CrossRefGoogle Scholar
  19. 19.
    Grischkowsky, D., Duling III, I.N., Chen, T.C., Chi, C.-C.: Electromagnetic shock waves from transmission lines. Phys. Rev. Lett. 59(15), 1663–1666 (1987)CrossRefGoogle Scholar
  20. 20.
    Jha, K.R., Singh, G.: Terahertz Planar Antennas for Next Generation Communication. Springer, Cham (2014)CrossRefGoogle Scholar
  21. 21.
    Jha, K.R., Singh, G.: Analysis and design of terahertz microstrip antenna on photonic bandgap material. J. Comput. Electron. 11(4), 364–373 (2012)CrossRefGoogle Scholar
  22. 22.
    Singh, A., Singh, S.: A trapezoidal microstrip patch antenna on photonic crystal substrate for high speed THz applications. Photonics Nanostruct. Fundam. Appl. 14, 52–62 (2015)CrossRefGoogle Scholar
  23. 23.
    Kushwaha, R.K., Karuppanan, P., Malviya, L.D.: Design and analysis of novel microstrip patch antenna on photonic crystal in THz. Physica B Condens. Matter 545, 107–112 (2018)CrossRefGoogle Scholar
  24. 24.
    Nejati, A., Sadeghzadeh, R.A., Geran, F.: Effect of photonic crystal and frequency selective surface implementation on gain enhancement in the microstrip patch antenna at terahertz frequency. Physica B Condens. Matter 449, 113–120 (2014)CrossRefGoogle Scholar
  25. 25.
    Dadras, M., Rezaei, P., Danaie, M.: Planar double-band monopole antenna with photonic crystal structure. Indian J. Sci. Technol. 8(36), 1–4 (2016)CrossRefGoogle Scholar
  26. 26.
    Jha, K.R., Singh, G.: Effect of unit-cells of the frequency selective surface as superstrate on the directivity of rectangular microstrip antenna. J. Comput. Electron. 13(2), 496–502 (2014)CrossRefGoogle Scholar
  27. 27.
    Noda, S., Tomoda, K., Yamamoto, N., Chutinan, A.: Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 289(5479), 604 (2000)CrossRefGoogle Scholar
  28. 28.
    Vlasov, Y.A., Bo, X.-Z., Sturm, J.C., Norris, D.J.: On-chip natural assembly of silicon photonic bandgap crystals. Nature 414(6861), 289 (2001)CrossRefGoogle Scholar
  29. 29.
    Qi, M., Lidorikis, E., Rakich, P.T., Johnson, S.G., Joannopoulos, J.D., Ippen, E.P., Smith, H.I.: A three-dimensional optical photonic crystal with designed point defects. Nature 429(6991), 538 (2004)CrossRefGoogle Scholar
  30. 30.
    Razmjou, A., Asadnia, M., Ghaebi, O., Yang, H.-C., Ebrahimi Warkiani, M., Hou, J., Chen, V.: Preparation of iridescent 2D photonic crystals by using a mussel-inspired spatial patterning of ZIF-8 with potential applications in optical switch and chemical sensor. ACS Appl. Mater. Interfaces 9(43), 38076–38080 (2017)CrossRefGoogle Scholar
  31. 31.
    Ilin, A.I., Volkov, V.T., Trofimov, O.V., Barabanenkov, M.Y.: Technological problems in forming Si waveguide lamellar diffraction gratings and 2D photonic crystals by plasma and wet etching of Si. In: 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO) (2015)Google Scholar
  32. 32.
    Rajpoot, V., Srivastava, D.K., Saurabh, A.K.: Optimization of I-shape microstrip patch antenna using PSO and curve fitting. J. Comput. Electron. 13(4), 1010–1013 (2014)CrossRefGoogle Scholar
  33. 33.
    Barkat, O.: Modeling and optimization of radiation characteristics of triangular superconducting microstrip antenna array. J. Comput. Electron. 13(3), 657–665 (2014)CrossRefGoogle Scholar
  34. 34.
    Fertas, K., Kimouche, H., Challal, M., Aksas, H., Aksas, R., Azrar, A.: Design and optimization of a CPW-fed tri-band patch antenna using genetic algorithms. ACES J. 30(7), 754–759 (2015)Google Scholar
  35. 35.
    Recioui, A., Azrar, A., Bentarzi, H., Dehmas, M., Chalal, M.: Synthesis of linear arrays with sidelobe level reduction constraint using genetic algorithms. Int. J. Microw. Opt. Technol. 3(5), 524–530 (2008)Google Scholar
  36. 36.
    Hassan, R., Cohanim, B., de Weck, O.: A comparison of particle swarm optimization and the genetic algorithm. In: Structures, Structural Dynamics and Materials Conference (2005)Google Scholar
  37. 37.
    Eberhart, R., Kennedy, J.: A new optimizer using particles swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan (1995)Google Scholar
  38. 38.
    Eberhart R., Kennedy J.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Network, Perth, Australia (1995)Google Scholar
  39. 39.
    Kennedy J., Eberhart, R.: A discrete binary version of the particle swarm algorithm. In: Proceedings of the IEEE International Conference on Computational Cybernetics and Simulation (1997)Google Scholar
  40. 40.
    Mirjalili, S., Lewis, A.: S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol. Comput. 9, 1–14 (2013)CrossRefGoogle Scholar
  41. 41.
    Singh, A., Singh, S.: A trapezoidal microstrip patch antenna on photonic crystal substrate for high speed THz applications. Photonics Nanostruct. Fundam. Appl. 14, 52–62 (2015)CrossRefGoogle Scholar
  42. 42.
    Anand, S., et al.: Graphene nanoribbon based terahertz antenna on polyimide substrate. Optik-Int. J. Light Electron Opt. 125, 5546–5549 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire d’Analyse des Signaux et Systèmes, Département d’ElectroniqueUniversité Mohamed Boudiaf - M’SilaM’silaAlgeria
  2. 2.Faculty of PhysicsShahid Bahonar University of KermanKermanIran

Personalised recommendations