Rational design of the nonlinear optical materials dinaphtho[2,3-b:2′,3′-d]thiophene-5,7,12,13-tetraone (DNTTRA) and its phenyldiazenyl derivatives using first-principles calculations

  • Ziran Chen
  • Yuan Li
  • Yonghua Guan
  • Hongping LiEmail author


Using density functional theory (DFT) at the M06-2X level with the 6-311++g(d,p) basis set, the structure, frontier orbitals, and second-order nonlinear optical (NLO) properties of dinaphtho[2,3-b:2′,3′-d]thiophene-5,7,12,13-tetraone (DNTTRA) and 18 of its phenyldiazenyl derivatives are calculated. The electronic absorption spectra are calculated by time-dependent density functional theory (TD-DFT) using the TD-M06-2X method. The results show that the strongest absorption peak of the 19 molecules lies in the range of 258.8–416.1 nm. When the 2, 10 sites of the DNTTRA molecule are substituted by phenyldiazenyl groups, the maximum absorption peak is red-shifted significantly compared with substitutions at the 3, 9 and 2, 9 sites. In addition, the second-order NLO properties (β0, βµ) are increased by 22 and 2 times more compared with the substitutions at the 3, 9 and 2, 9 positions, indicating that substitution of phenyldiazenyl groups at the 2, 10 sites is superior to substitution at the 3, 9 and 2, 9 sites for the DNTTRA molecule. Moreover, substitution of strong electron-donor groups [such as –NHCH3 or –N(CH3)2] at the opposite end of the phenyldiazenyl rings is found to be beneficial to improve the second-order NLO properties of the system, resulting in second-order NLO materials with excellent performance.

Graphical abstract


Phenyldiazenyl Dinaphtho[2,3-b:2′,3′-d]thiophene-5,7,12,13-tetraone Density functional theory Electronic absorption spectra Second-order nonlinear optical properties 



This work is financially supported by the Project of Science and Technology Department of Sichuan Province (no. 2015GZ0343), the Project of Sichuan Provincial Department of Education (nos. 15ZA0346, 17ZA0346), the National Natural Science Foundation of China (no. 21808092), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. This research work is supported by the high-performance computing platform of Jiangsu University.

Supplementary material

10825_2019_1300_MOESM1_ESM.doc (3 mb)
Supplementary material 1 (DOC 3103 kb)


  1. 1.
    Chen, M., Xue, H., Guo, S.: Multinary metal chalcogenides with tetrahedral structures for second-order nonlinear optical, photocatalytic, and photovoltaic applications. Coord. Chem. Rev. 368, 115–133 (2018)CrossRefGoogle Scholar
  2. 2.
    Misra, R.: Tuning of second-order nonlinear optical response properties of aryl-substituted boron-dipyrromethene dyes: Unidirectional charge transfer coupled with structural tailoring. J. Phys. Chem. C 121, 5731–5739 (2017)CrossRefGoogle Scholar
  3. 3.
    Gao, F.W., Xu, H.L., Su, Z.M.: Tuning the inter-molecular charge transfer, second-order nonlinear optical and absorption spectra properties of a pi-dimer under an external electric field. Phys. Chem. Chem. Phys. 19, 31958–31964 (2017)CrossRefGoogle Scholar
  4. 4.
    Buckley, L.E.R., Coe, B.J., Rusanova, D., Joshi, V.D., Sanchez, S., Jirasek, M., Vavra, J., Khobragade, D., Severa, L., Cisarova, I., Saman, D., Pohl, R., Clays, K., Depotter, G., Brunschwig, B.S., Teply, F.: Tunable chiral second-order nonlinear optical chromophores based on helquat dications. J. Phys. Chem. A 121, 5842–5855 (2017)CrossRefGoogle Scholar
  5. 5.
    Liu, X.H., Zhao, Z.X., Wang, J., Zhang, W., Zhang, H.X.: Theoretical investigation on the photoswitchable second-order nonlinear optical properties of a series of b(c6f5)(2)-coordinated dithienylethene derivatives. J. Photochem. Photobiol. A 335, 155–164 (2017)CrossRefGoogle Scholar
  6. 6.
    Wang, H.Q., Wang, W.Y., Fang, X.Y., Wang, L., Zhu, C.L., Chen, Z.Z., Chen, H., Qiu, Y.Q.: Second-order nonlinear optical responses of carboranyl-substituted indole/indoline derivatives: Impact of different substituents. J. Mol. Gr. Modell. 67, 111–118 (2016)CrossRefGoogle Scholar
  7. 7.
    Qi, D., Jiang, J.: Nature of the intense second-order nonlinear optical activity: DFT studies on the octupolarization of sandwich-type bis(phthalocyaninato) yttrium skeletons. ChemPhysChem 16, 1889–1897 (2015)CrossRefGoogle Scholar
  8. 8.
    Chen, J., Wang, M.Q., Zhou, X., Yang, L., Li, W.-Q., Tian, W.Q.: Two-dimensional second-order nonlinear optical spectra: landscape of second-order nonlinear optics. Phys. Chem. Chem. Phys. 19, 29315–29320 (2017)CrossRefGoogle Scholar
  9. 9.
    Shkir, M., AlFaify, S., Arora, M., Ganesh, V., Abbas, H., Yahia, I.S.: A first principles study of key electronic, optical, second and third order nonlinear optical properties of 3-(4-chlorophenyl)-1-(pyridin-3-yl) prop-2-en-1-one: a novel d-pi-a type chalcone derivative. J. Comput. Electron. 17, 9–20 (2018)CrossRefGoogle Scholar
  10. 10.
    Lin, J., Sa, R., Zhang, M., Wu, K.: Exploring second-order nonlinear optical properties and switching ability of a series of dithienylethene-containing, cyclometalated platinum complexes: a theoretical investigation. J. Phys. Chem. A 119, 8174–8181 (2015)CrossRefGoogle Scholar
  11. 11.
    Bondu, F., Quertinmont, J., Rodriguez, V., Pozzo, J.-L., Plaquet, A., Champagne, B., Castet, F.: Second-order nonlinear optical properties of a dithienylethene-indolinooxazolidine hybrid: a joint experimental and theoretical investigation. Chem. Eur. J. 21, 18749–18757 (2015)CrossRefGoogle Scholar
  12. 12.
    Alam, M.M., Kundi, V., Thankachan, P.P.: Solvent effects on static polarizability, static first hyperpolarizability and one- and two-photon absorption properties of functionalized triply twisted möbius annulenes: a DFT study. Phys. Chem. Chem. Phys. 18, 21833–21842 (2016)CrossRefGoogle Scholar
  13. 13.
    Teran, N.B., He, G.S., Baev, A., Shi, Y., Swihart, M.T., Prasad, P.N., Marks, T.J., Reynolds, J.R.: Twisted thiophene-based chromophores with enhanced intramolecular charge transfer for cooperative amplification of third-order optical nonlinearity. J. Am. Chem. Soc. 138, 6975 (2016)CrossRefGoogle Scholar
  14. 14.
    Yang, M., Jacquemin, D., Champagne, B.: Intramolecular charge transfer and first-order hyperpolarizability of planar and twisted sesquifulvalenes. Phys. Chem. Chem. Phys. 4, 5566–5571 (2002)CrossRefGoogle Scholar
  15. 15.
    Shimada, M., Yamanoi, Y., Matsushita, T., Kondo, T., Nishibori, E., Hatakeyama, A., Sugimoto, K., Nishihara, H.: Optical properties of disilane-bridged donor-acceptor architectures: strong effect of substituents on fluorescence and non-linear optical properties. J. Am. Chem. Soc. 137, 1024 (2015)CrossRefGoogle Scholar
  16. 16.
    van Dijk, E.H., Myles, D.J., van der Veen, M.H., Hummelen, J.C.: Synthesis and properties of an anthraquinone-based redox switch for molecular electronics. Org. Lett. 8, 2333–2336 (2006)CrossRefGoogle Scholar
  17. 17.
    El-Aal, R.M.A., Koraiem, A.I.M., El-Deen, N.S.: Pyrazolo quinone heterocyclic compounds and metal complex derivatives in the synthesis of cyanine dyes. Dyes Pigm. 63, 301–314 (2004)CrossRefGoogle Scholar
  18. 18.
    Fujita, T., Atahan-Evrenk, S., Sawaya, N.P.D., Aspuru-Guzik, A.: Coherent dynamics of mixed Frenkel and charge-transfer excitons in dinaphtho[2,3-b:2′3′-f]thieno[3,2-b]-thiophene thin films: the importance of hole delocalization. J. Phys. Chem. Lett. 7, 1374–1380 (2016)CrossRefGoogle Scholar
  19. 19.
    Guo, X., Yao, B., Jiang, G., Cheng, Y., Xie, Z., Wang, L., Ing, X., Wang, F.: Synthesis and characterization of color-stable electroluminescent polymers: poly(dinaphtho[1,2-a:1′,2′-g]-s-indacene)s. J. Polym. Sci. Pol. Chem. 46, 4866–4878 (2008)CrossRefGoogle Scholar
  20. 20.
    Milvich, J., Zaki, T., Aghamohammadi, M., Roedel, R., Kraft, U., Klauk, H., Burghartz, J.N.: Flexible low-voltage organic phototransistors based on air-stable dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT). Org. Electron. 20, 63–68 (2015)CrossRefGoogle Scholar
  21. 21.
    Fan, W., Yin, Z., Ma, Y., Wang, B., Chen, S., Tang, C., Zheng, Q.: Dinaphtho-s-indacene-based copolymers for inverted organic solar cells with high open-circuit voltages. Polymer 55, 2262–2270 (2014)CrossRefGoogle Scholar
  22. 22.
    Ishino, Y., Miyata, K., Sugimoto, T., Watanabe, K., Matsumoto, Y., Uemura, T., Takeya, J.: Ultrafast exciton dynamics in dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]-thiophene thin films. Phys. Chem. Chem. Phys. 16, 7501–7512 (2014)CrossRefGoogle Scholar
  23. 23.
    Gao, J., Cheng, L., Chen, X.: Synthesis and properties of quinone heterocyclic organic third order nonlinear optical materials. Chin. High. Tech. Lett., 45–49 (1999)Google Scholar
  24. 24.
    Cai, Z., Zhou, M., Gao, J.: Studies on the synthesis and structure nonlinear optical properties of anthracene two ketones. Acta Photonica Sin. 39, 823–828 (2010)CrossRefGoogle Scholar
  25. 25.
    Shahab, S., Filippovich, L., Sheikhi, M., Kumar, R., Dikusar, E., Yahyaei, H., Muravsky, A.: Polarization, excited states, trans-cis properties and anisotropy of thermal and electrical conductivity of the 4-(phenyldiazenyl)aniline in PVA matrix. J. Mol. Struct. 1141, 703–709 (2017)CrossRefGoogle Scholar
  26. 26.
    Sayin, K., Kurtoglu, N., Kose, M., Karakas, D., Kurtoglu, M.: Computational and experimental studies of 2-(E)-hydrazinylidenemethyl-6-methoxy-4-(E)-phenyldiazenyl phenol and its tautomers. J. Mol. Struct. 1119, 413–422 (2016)CrossRefGoogle Scholar
  27. 27.
    Kose, M., Kurtoglu, N., Gumussu, O., Tutak, M., McKee, V., Karakas, D., Kurtoglu, M.: Synthesis, characterization and antimicrobial studies of 2-{(e)-(2-hydroxy-5-methylphenyl)imino methyl}-4-(e)-phenyldiazenyl phenol as a novel azo-azomethine dye. J. Mol. Struct. 1053, 89–99 (2013)CrossRefGoogle Scholar
  28. 28.
    Hristova, S., Deneva, V., Pittelkow, M., Crochet, A., Kamounah, F.S., Fromm, K.M., Hansen, P.E., Antonov, L.: A concept for stimulated proton transfer in 1-(phenyldiazenyl)naphthalen-2-ols. Dyes Pigm. 156, 91–99 (2018)CrossRefGoogle Scholar
  29. 29.
    Shkir, M., Patil, P.S., Arora, M., AlFaify, S., Algarni, H.: An experimental and theoretical study on a novel donor-π-acceptor bridge type 2,4,5-trimethoxy-4′-chlorochalcone for optoelectronic applications: a dual approach. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 173, 445–456 (2017)CrossRefGoogle Scholar
  30. 30.
    Shkir, M.: Investigation on the key features of l-histidinium 2-nitrobenzoate (LH2NB) for optoelectronic applications: a comparative study. J. King Saud Univ. Sci. 29, 70–83 (2017)CrossRefGoogle Scholar
  31. 31.
    Shkir, M., AlFaify, S., Arora, M., Ganesh, V., Abbas, H., Yahia, I.S.: A first principles study of key electronic, optical, second and third order nonlinear optical properties of 3-(4-chlorophenyl)-1-(pyridin-3-yl) prop-2-en-1-one: a novel d-π-a type chalcone derivative. J. Comput. Electron. 17, 9–20 (2018)CrossRefGoogle Scholar
  32. 32.
    AlFaify, S., Shkir, M., Arora, M., Irfan, A., Algarni, H., Abbas, H., Al-Sehemi, A.G.: Quantum chemical investigation on molecular structure, vibrational, photophysical and nonlinear optical properties of l-threoninium picrate: an admirable contender for nonlinear applications. J. Comput. Electron. 17, 1421–1433 (2018)CrossRefGoogle Scholar
  33. 33.
    Frisch, M.J., Trucks, G.W., Schlegel, G.W., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A. Jr., J.E.P., Ogliaro, F., Bearpark, M.J., Heyd, J. J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J.: Gaussian 16. Gaussian, Inc., Wallingford CT (2016)Google Scholar
  34. 34.
    Yu, H.Y.S., He, X., Li, S.H.L., Truhlar, D.G.: MN15: a Kohn–Sham global-hybrid exchange-correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem. Sci. 7, 5032–5051 (2016)CrossRefGoogle Scholar
  35. 35.
    Yanai, T., Tew, D.P., Handy, N.C.: A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004)CrossRefGoogle Scholar
  36. 36.
    Cui, Y.Z., Fang, Q., Xue, G., Yu, W.T., Lei, H., Cheng, X.F., Zhang, S.J., Liu, G.J.: Synthesis, structure and optical properties of 2,4,6- three (p methylstyrene) three azine. Acta Chim. Sinica 62, 620–624 (2004)Google Scholar
  37. 37.
    Oudar, J.L.: Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J. Chem. Phys. 67, 446–457 (1977)CrossRefGoogle Scholar
  38. 38.
    Mallah, R.R., Mohbiya, D.R., Sreenath, M.C., Chitrambalam, S., Joe, I.H., Sekar, N.: Non-linear optical response of meso hybrid bodipy: synthesis, photophysical, DFT and Z scan study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 209, 126–140 (2019)CrossRefGoogle Scholar
  39. 39.
    Machado, D.F.S., Lopes, T.O., Lima, I.T., da Silva Filho, D.A., de Oliveira, H.C.B.: Strong solvent effects on the nonlinear optical properties of Z and E isomers from azo-enaminone derivatives. J. Phys. Chem. C 120, 17660–17669 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Architecture and Environment EngineeringSichuan Vocational and Technical CollegeSuiningPeople’s Republic of China
  2. 2.Department of Electronic and Electrical EngineeringSichuan Vocational and Technical CollegeSuiningPeople’s Republic of China
  3. 3.Institute for Energy ResearchJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations