Advertisement

Noise performance of avalanche transit-time devices in the presence of acoustic phonons

  • Girish Chandra Ghivela
  • Joydeep Sengupta
Article
  • 10 Downloads

Abstract

Through this paper, the effects of acoustic phonons on the noise performance of avalanche transit-time devices have been investigated and reported. For this study, a double-drift-region silicon-based impact avalanche transit-time diode has been considered at operating frequencies of 94 GHz, 140 GHz and 220 GHz. To analyze the acoustic phonon effects on noise performance, the interactions of charge carriers with acoustic deformation potential and piezoelectric acoustic phonons have been considered in addition to all possible types of scattering events. These effects have been analyzed through a numerical expression for the ionization rate of charge carriers and incorporated in the noise analysis. The noise performance is evaluated in terms of noise spectral density (NSD) and noise measure (NM). The results show that due to acoustic phonons, values of NSD and NM significantly increase.

Keywords

Acoustic phonon Deformation potential Noise Ionization rate Avalanche Drift 

Notes

Acknowledgements

This work was supported by the Department of Electronics and Communication Engineering, VNIT, Nagpur, India. The authors are grateful to the Ministry of Human Resource Development, Government of India, for providing research assistantship to G.C. Ghivela.

References

  1. 1.
    Sze, S.M.: IMPATT diodes. In: Sze, S.M., Ng, K.K. (eds.) Physics of Semiconductor Devices, 3rd edn, pp. 484–486. Willey, New Jersey (2007)Google Scholar
  2. 2.
    Kuvas, R.L.: Noise in IMPATT diodes: intrinsic properties. IEEE Trans. Electron Devices 19, 220–233 (1972)CrossRefGoogle Scholar
  3. 3.
    Gummel, H.K., Blue, J.L.: A small signal theory of avalanche noise in IMPATT diodes. IEEE Trans. Electron Devices 14, 569–580 (1967)CrossRefGoogle Scholar
  4. 4.
    Hines, M.E.: Noise theory of read type avalanche diode. IEEE Trans. Electron Devices 13, 158–163 (1966)CrossRefGoogle Scholar
  5. 5.
    Mishra, J.K., Panda, A.K., Dash, G.N.: An extremely low-noise heterojunction IMPATT. IEEE Trans. Electron Devices 44, 2143–2148 (1997)CrossRefGoogle Scholar
  6. 6.
    Tager, A.S.: Current fluctuations in semiconductor (dielectric) under the conditions of impact ionization and avalanche breakdown. Sov. Phys. Solid State 4, 1919–1925 (1965)Google Scholar
  7. 7.
    Acharyya, A.: Diminution of impact ionization rate of charge carriers in semiconductors due to acoustic phonon scattering. Appl. Phys. A 123, 629 (2017).  https://doi.org/10.1007/s00339-017-1245-2 CrossRefGoogle Scholar
  8. 8.
    Bandyopadhyay, P.K., et al.: Large-signal characterization of millimeter-wave IMPATTs: effect of reduced impact ionization rate of charge carriers due to carrier–carrier interactions. J. Comput. Electron. 15, 646–656 (2016)CrossRefGoogle Scholar
  9. 9.
    Bandyopadhyay, P.K., et al.: Millimeter-wave and terahertz IMPATT sources: influence of inter-carrier interactions. Int. J. Nanopart. (2018).  https://doi.org/10.1504/IJNP.2018.092683 CrossRefGoogle Scholar
  10. 10.
    Bandyopadhyay, P.K., et al.: Influence of carrier–carrier interactions on the noise performance of millimeter-wave IMPATTs. IETE J. Res. (2018).  https://doi.org/10.1080/03772063.2018.1433078 CrossRefGoogle Scholar
  11. 11.
    Acharyya, A., Banerjee, J.P.: A generalized analytical model based on multistage scattering phenomena for estimating the impact ionization rate of charge carriers in semiconductors. J. Comput. Electron. 13, 917–924 (2014)CrossRefGoogle Scholar
  12. 12.
    Midday, S., Bhattacharya, D.P.: Energy loss in degenerate semiconductors due to inelastic interaction with acoustic and piezoelectric phonons at low lattice temperatures. Phys. Scr. 83, 025702 (2011)CrossRefGoogle Scholar
  13. 13.
    Acharyya, A., Chatterjee, S., Das, A., et al.: Additional confirmation of a generalized analytical model based on multistage scattering phenomena to evaluate the ionization rates of charge carriers in semiconductors. J. Comput. Electron. 15, 34–39 (2016)CrossRefGoogle Scholar
  14. 14.
    Ghivela, G.C., Sengupta, J.: Effect of acoustic phonon scattering on impact ionization rate of electrons in monolayer graphene nanoribbons. Appl. Phys. A 124, 762 (2018).  https://doi.org/10.1007/s00339-018-2193-1 CrossRefGoogle Scholar
  15. 15.
    Harrison, W.A., Klepeis, J.E.: Dielectric screening in semiconductors. Phys. Rev. B 37, 864–873 (1988)CrossRefGoogle Scholar
  16. 16.
    Sengupta, J., Ghivela, G.C., Gajbhiye, A., Mitra, M.: Measurement of noise and efficiency of 4H-SiC IMPATT diode at Ka band. Int. J. Electron. Lett. 4, 134–140 (2016)CrossRefGoogle Scholar
  17. 17.
    Ghivela, G.C., Sengupta, J., Mitra, M.: Ka band noise comparison for Si, Ge, GaAs, InP, WzGaN, 4H-SiC based IMPATT diode. Int. J. Electron. Lett. (2018).  https://doi.org/10.1080/21681724.2018.1460869 CrossRefGoogle Scholar
  18. 18.
    Ghosh, M., et al.: Noise performance of 94 GHz multiple quantum well double-drift region IMPATT sources. J. Act. Passive Electron Devices 13, 185–194 (2018)Google Scholar
  19. 19.
    Acharyya, A., Mukherjee, M., Banerjee, J.P.: Noise performance of millimeter-wave silicon based mixed tunneling avalanche transit time (MITATT) diode. Int. J. Electrical Electron. Eng. 4, 577–584 (2010)Google Scholar
  20. 20.
    Acharyya, A., Banerjee, S., Banerjee, J.P.: Effect of photo-irradiation on the noise properties of double-drift silicon MITATT device. Int. J. Electron. 101, 1270–1286 (2014)CrossRefGoogle Scholar
  21. 21.
    Ghivela, G.C., Sengupta, J.: Prospects of impact avalanche transit time diode based on chemical vapor deposited diamond substrate. J. Electron. Mater. (2018).  https://doi.org/10.1007/s11664-018-6821-5 CrossRefGoogle Scholar
  22. 22.
    Electronic archive: new semiconductor materials, characteristics and properties. http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/bandstr.html (2013). Accessed 20 May 2018
  23. 23.
    Qiu, B., et al.: First principles simulation of electron mean-free-path spectra and thermoelectric properties in silicon. EPL 109, 1–5 (2015)CrossRefGoogle Scholar
  24. 24.
    Grant, W.N.: Electron and hole ionization rates in epitaxial silicon. Solid State Electron. 16, 1189–1203 (1973)CrossRefGoogle Scholar
  25. 25.
    Cartier, et al.: Impact ionization in silicon. Appl. Phys. Lett. 62, 3339–3341 (1993)CrossRefGoogle Scholar
  26. 26.
    Woods, M.H., Johnson, W.C., Lampert, M.A.: Use of a Schottky barrier to measure impact ionization coefficients in semiconductors. Solid State Electron. 16, 381–394 (1973)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.EMI-EMC Lab, Department of Electronics and Communication EngineeringVisvesvaraya National Institute of TechnologyNagpurIndia

Personalised recommendations