Efficient reliability evaluation of combinational and sequential logic circuits

  • H. JahaniradEmail author


Reliability has become one of the major goals for designs based on emerging technologies. Therefore, reliability evaluation should be included in the design flow of logic integrated circuits. In this paper, a probability transfer matrix-based method is developed for reliability evaluation of combinational and sequential logic circuits. The proposed method for combinational circuits is based on correct and incorrect probabilities for the binary logic values (0 and 1) of the nodes of the circuit. In this method, the reconvergent fanouts problem is handled using the concept of correlation coefficients. The reliability evaluation of sequential logic circuits is carried out by first breaking the loops, followed by iterative application of the combinational method on the converted circuit. The accuracy and scalability of the proposed methods are proved by various simulations on ISCAS 85 and LGSynth91 benchmark circuits for the combinational method and on ISCAS 89 benchmark circuits for the sequential method. The results show less than 2 % average error for reliability estimation compared with Monte Carlo (MC) simulations, outperforming state-of-the-art methods in terms of reliability estimation and algorithm runtime.


Reliability Signal probability Correlation coefficients Faults and errors Circuit graph Combinational and sequential circuits 


  1. 1.
    El-Maleh, A., Daud, K.: Simulation-based method for synthesizing soft error tolerant combinational circuits. IEEE Trans. Reliab. 64(3), 935–948 (2015)CrossRefGoogle Scholar
  2. 2.
    Borkar, S.: Designing reliable systems from unreliable components: the challenges of transistor variability and degradation. IEEE Micro 25(6), 10–16 (2005)CrossRefGoogle Scholar
  3. 3.
    Shanbhag, N.R., Mitra, S., de Veciana, G., Orshansky, M., Marculescu, R., Roychowdhury, J., Jones, D., Rabaey, J.M.: The search for alternative computational paradigms. IEEE Des. Test Comput. 25(4), 334–344 (2008)CrossRefGoogle Scholar
  4. 4.
    Meindl, J.D., Chen, Q., Davis, J.A.: Limits on silicon nanoelectronics for terascale integration. Science 293(5537), 2044–2049 (2001)CrossRefGoogle Scholar
  5. 5.
    Breuer, M.A., Gupta, S.K., Mak, T.M.: Defect and error tolerance in the presence of massive numbers of defects. IEEE Des. Test Comput. 21(3), 216–227 (2004)CrossRefGoogle Scholar
  6. 6.
    Bodapati, S., Siridharan, K.: A transistor-level probabilistic approach for reliability analysis of arithmetic circuits with application to emerging technologies. IEEE Trans. Reliab. 66(2), 440–457 (2017)CrossRefGoogle Scholar
  7. 7.
    von Neuman, J.: Probabilistic logics and synthesis of reliable organisms from unreliable components. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, pp. 43–98. Princeton Press, Princeton, NJ (1956)Google Scholar
  8. 8.
    Han, J., Chen, H., Liang, J., Zhu, P., Yang, Z., Lombardi, F.: A stochastic computational approach for accurate and efficient reliability evaluation. IEEE Trans. Comput. 63(6) (2014)Google Scholar
  9. 9.
    Bhaduri, D., Shukla, S.: Nanoprism: a tool for evaluating granularity versus reliability tradeoffs in nano architectures. In: Proceedings of ACM GLSVLSI, Boston, MA, April 2004, pp. 109–112Google Scholar
  10. 10.
    Krishnaswamy, S., Viamonets, G.V., Markov, I.L., Hayes, J.P.: Probabilistic transfer matrices in symbolic reliability analysis of logic circuits. ACM Trans. Des. Autom. Electron Syst. 13(1), 1–35 (2008)CrossRefGoogle Scholar
  11. 11.
    Han, J., Chen, H., Boykin, E., Fortes, J.: Reliability evaluation of logic circuits using probabilistic gate models. Microelectron. Reliab. 51(2), 468–476 (2011)CrossRefGoogle Scholar
  12. 12.
    Rejimon, T., Lingasubramanian, K., Bhanja, S.: Probabilistic error modeling for nano-domain logic circuits. IEEE Trans. VLSI 17(1), 55–65 (2009)CrossRefGoogle Scholar
  13. 13.
    Abdollahi, A.: Probabilistic decision diagrams for exact probabilistic analysis. In: Proceedings of IEEE/ACM International Conference on CAD, 2007, pp. 266–272Google Scholar
  14. 14.
    Mohyudin, N., Pakbaz nia E., Pedam M.: Probabilistic error propagation in logic circuits using the Boolean difference calculus. In: IEEE International Conference on Computer Design, Lake Tahoe, CA, 2008, pp. 7-13Google Scholar
  15. 15.
    Chen, C., Xiao, R.: A fast model for analysis and improvement of gate-level circuit reliability. Integr. VLSI J. 50, 107–115 (2015)CrossRefGoogle Scholar
  16. 16.
    Franco, D.T., Vasconcelos, M.C., Naviner, L., Naviner, J.F.: Signal probability for reliability evaluation of logic circuits. Microelectron. Reliab. 48, 1586–1591 (2008)CrossRefGoogle Scholar
  17. 17.
    Flaquer, J.T., Daveau, J.M., Naviner, L., Roche, P.: Fast reliability analysis of combinatorial logic circuits using conditional probabilities. Microelectron. Reliab. 50, 1215–1218 (2010)CrossRefGoogle Scholar
  18. 18.
    Choudhury, M.R., Mohanram, K.: Reliability analysis of logic circuits. IEEE Trans. CAD 28(3) (2009)Google Scholar
  19. 19.
    Ebrahimi, M., Evans, A., Tahoori, M.B., Costenaro, E., Alexandrescu, D., Chandra, V., Seyyedi, R.: Comprehensive analysis of sequential and combinational soft errors in an embedded processor. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1586–1599 (2015)CrossRefGoogle Scholar
  20. 20.
    Wang, F, Agrawal, V.D.: Soft error rate determination for nanoscale sequential logic. In: 2010 11th International Symposium on Quality Electronic Design (ISQED’10), pp. 225–230. IEEE (2010)Google Scholar
  21. 21.
    Miskov-Zivanov, N., Marculescu, D.: Soft error rate analysis for sequential circuits. In: Proceedings of the Conference on Design, Automation and Test in Europe. EDA Consortium, pp. 1436–1441 (2007)Google Scholar
  22. 22.
    Miskov-Zivanov, N., Marculescu, D.: Modeling and optimization for soft-error reliability of sequential circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(5), 803–816 (2008)CrossRefGoogle Scholar
  23. 23.
    Jahanirad, H., Mohammadi, K.: Sequential logic circuits reliability analysis. J. Circuits Syst. Comput. 21(5), 1250040-(1-17) (2012)CrossRefGoogle Scholar
  24. 24.
    Seyyed Mahdavi, S.J., Mohammadi, K.: SCRAP: sequential circuit reliability analysis program. Microelectron. Reliab. J. 49, 924–933 (2009)CrossRefGoogle Scholar
  25. 25.
    Ercolani, S., Favalli, M., Damiani, M., Olivo, P., Ricco, B.: Estimate of signal probability in combinational logic networks. In: Proceedings of European Testing Conference 1989, pp. 132–138Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentUniversity of KurdistanSanandajIran

Personalised recommendations