Threshold voltage modeling for a Gaussian-doped junctionless FinFET

  • Shalu KaundalEmail author
  • Ashwani K. Rana


This work presents two-dimensional (2D) analytical modeling of the threshold voltage of a double-gate junctionless FinFET with a Gaussian-doped channel by evaluating the 2D electrostatic potential distribution across the active area of the device. The influence of the fringing field lines through the spacer is also included in the modeling. To confirm the validity of the derived analytical model, technology computer-aided design (TCAD) device simulations were carried out. Furthermore, the impact of various design parameters on the threshold voltage was also studied.


Junctionless Modeling FinFET Nonuniform Gaussian channel Poisson equation 


  1. 1.
    Ferain, I., Colinge, C.A., Colinge, J.-P.: Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature 479, 310–316 (2011)CrossRefGoogle Scholar
  2. 2.
    Riyadi, M.A., Suseno, J.E., Ismail, R.: The future of non planar nanoelectronics MOSFET devices: a review. J. Appl. Sci. 10, 2136–2146 (2010)CrossRefGoogle Scholar
  3. 3.
    Ionescu, A.M.: Electronic devices: nanowire transistors made easy. Nat. Nanotechnol. 5, 178–179 (2010)CrossRefGoogle Scholar
  4. 4.
    Colinge, J.-P., Lee, C.-W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., et al.: Nanowire transistors without junctions. Nat. Nanotechnol. 5, 225–229 (2010)CrossRefGoogle Scholar
  5. 5.
    Colinge, J., Kranti, A., Yan, R., et al.: Junctionless nanowire transistor (JNT): properties and design guidelines. Solid State Electron. 65, 33–37 (2011)CrossRefGoogle Scholar
  6. 6.
    Parihar, M.S., Ghosh, D., Kranti, A.: Ultra low power junctionless MOSFETs for subthreshold logic applications. IEEE Trans. Electron Devices 60, 1540–1546 (2013)CrossRefGoogle Scholar
  7. 7.
    Baruah, R.K., Paily, R.P.: Double-gate junctionless transistor for low power digital applications. In: 1st IEEE International Conference on ICETACS, Shilong, India, 13–14 Sept (2013)Google Scholar
  8. 8.
    Ghosh, D., Parihar, M.S., Armstrong, G.A., Kranti, A.: High-performance junctionless MOSFETs for ultra low-power analog/RF applications. IEEE Electron Device Lett. 33, 1477–1479 (2012)CrossRefGoogle Scholar
  9. 9.
    Doria, R.T., Pavanello, M.A., Trevisoli, R.D., Souza, M.D., Lee, C.-W., et al.: Junctionless multiple-gate transistors for analog applications. IEEE Trans. Electron Devices 58, 2511–2519 (2011)CrossRefGoogle Scholar
  10. 10.
    Chebaki, E., Djeffal, F., Ferhati, H., Bentrcia, T.: Improved analog/RF performance of double gate junctionless MOSFET using both gate material engineering and drain/source extensions. Superlattices Microstruct. 92, 80–91 (2016)CrossRefGoogle Scholar
  11. 11.
    Chiang, T.-K.: A quasi two dimensional threshold voltage model for short-channel junctionless double-gate MOSFETs. IEEE Trans. Electron Devices 59, 2284–2289 (2012)CrossRefGoogle Scholar
  12. 12.
    Jazaeri, F., Barbut, L., Kaukab, A., Sallese, J.-M.: Analytical model for ultra-thin body junctionless symmetric double gate MOSFETs in subthreshold regime. Solid State Electron. 82, 103–110 (2013)CrossRefGoogle Scholar
  13. 13.
    Jin, X., Liu, X., Kwon, H.-I., Lee, J.-H., Lee, J.-H.: A subthreshold current model for nanoscale short channel junctionless MOSFETs applicable to symmetric and asymmetric double-gate structure. Solid State Electron. 82, 77–81 (2013)CrossRefGoogle Scholar
  14. 14.
    Baruah, R.K., Paily, R.P.: A surface potential based drain current model for short channel symmetric double-gate junctionless transistor. J. Comput. Electron. 15, 45–52 (2016)CrossRefGoogle Scholar
  15. 15.
    Holtij, T., Schwarz, M., Kloes, A., Iniguez, B.: Threshold voltage, and 2D potential modeling within short channel junctionless DG MOSFETs in subthreshold region. Solid State Electron. 90, 107–115 (2013)CrossRefGoogle Scholar
  16. 16.
    Jiang, C., Liang, R., Wang, J., Xu, J.: A two-dimensional analytical model for short channel junctionless double-gate MOSFETs. AIP Adv. 5, 057122-1-13 (2015)Google Scholar
  17. 17.
    Kumari, V., Modi, V., Saxena, M., Gupta, M.: Modeling and simulation of double gate junctionless transistor considering fringing field effects. Solid State Electron. 107, 20–29 (2015)CrossRefGoogle Scholar
  18. 18.
    Gupta, S.K.: Threshold voltage model of junctionless cylindrical surrounding gate MOSFETs including fringing field effects. Superlattices Microstruct. 88, 188–197 (2015)CrossRefGoogle Scholar
  19. 19.
    Zhang, G., Shao, Z., Zhou, K.: Threshold voltage model of short channel FD-SOI MOSFETs with vertical Gaussian profile. IEEE Trans. Electron Devices 35, 803–809 (2008)CrossRefGoogle Scholar
  20. 20.
    Suzuki, K., Kataoka, Y., Nagayama, S., et al.: Analytical model for redistribution profile of ion-implanted impurities during solid phase epitaxy. IEEE Trans. Electron Devices 54, 262–271 (2007)CrossRefGoogle Scholar
  21. 21.
    Mondal, P., Ghosh, B., Bal, P.: Planar junctionless transistor with non-uniform channel doping. Appl. Phys. Lett. 102, 2–5 (2013)CrossRefGoogle Scholar
  22. 22.
    Mondal, P., Ghosh, B., Bal, P., et al.: Effects of non-uniform doping on junctionless transistor. Appl. Phys. A 119, 127–132 (2015)CrossRefGoogle Scholar
  23. 23.
    Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley, New York (1983)Google Scholar
  24. 24.
    International Technology Roadmap for Semiconductors (2013). Accessed 1 Dec 2017
  25. 25.
    Sentaurus TCAD User Manual, Synopsys, Inc. (2016). Accessed 1 Dec 2017
  26. 26.
    Kim, S.-H., Fossum, J.G., Yang, J.-W.: Modeling and significance of fringe capacitance in non classical CMOS devices with gate-source/drain underlap. IEEE Trans. Electron Devices 53, 2143–2150 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electronics and Communication Engineering DepartmentNIT HamirpurHamirpurIndia

Personalised recommendations