Advertisement

Performance analysis of a substrate-engineered monolayer MoS2 field-effect transistor

  • N. Divya Bharathi
  • K. Sivasankaran
Article
  • 16 Downloads

Abstract

We investigate the impact of different substrates on the performance of a monolayer MoS2 field-effect transistor (FET) by calculating the interface charge density between the MoS2 layer and the substrate using first-principle calculations based on density functional theory to provide details about the overlap of electron orbitals at the interface. The electrical characteristics of the monolayer MoS2 FET are determined by using the extracted interface charge density in numerical simulations. The electron transport behavior of the monolayer MoS2 FET is modeled using the nonequilibrium Green’s function with mode space (NEGF_MS) approach. We study and compare the performance of monolayer MoS2 FETs on different substrates, viz. SiO2, HfSiO4, Si3N4, HfO2, and h-BN. The results reveal that the monolayer MoS2 FET on the h-BN/Si substrate exhibits an on-current of 548 µA/µm and a subthreshold swing of 65 mV/dec.

Keywords

Monolayer MoS2 FET Charge density Carrier fluctuations Electron transport NEGF_MS 

Notes

Acknowledgements

This work is supported by SERB (DST), Government of India grant no. ECR/2017/000220.

References

  1. 1.
    Mak, K., Lee, C., Hone, J., Shan, J., Heinz, T.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).  https://doi.org/10.1103/PhysRevLett.105.136805 CrossRefGoogle Scholar
  2. 2.
    Schwierz, F., Pezoldt, J., Granzner, R.: Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7, 8261–8283 (2015).  https://doi.org/10.1039/C5NR01052G CrossRefGoogle Scholar
  3. 3.
    Pospischil, A., Mueller, T.: Optoelectronic devices based on atomically thin transition metal dichalcogenides. Appl. Sci. 6, 78 (2016).  https://doi.org/10.3390/app6030078 CrossRefGoogle Scholar
  4. 4.
    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, I.V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011)CrossRefGoogle Scholar
  5. 5.
    Kim, J.H., Kim, T.H., Lee, H., Park, Y.R., Choi, W., Lee, C.J.: Thickness-dependent electron mobility of single and few-layer MoS2 thin-film transistors. AIP Adv. 6, 2–7 (2016).  https://doi.org/10.1063/1.4953809 CrossRefGoogle Scholar
  6. 6.
    Yoon, Y., Ganapathi, K., Salahuddin, S.: How good can monolayer MoS2 transistors be? Nano Lett. 11, 3768–3773 (2011).  https://doi.org/10.1021/nl2018178 CrossRefGoogle Scholar
  7. 7.
    Li, Z., Li, X., Yang, J.: Comparative study on electronic structures of Sc and Ti contacts with monolayer and multilayer MoS2. ACS Appl. Mater. Interfaces 7, 12981–12987 (2015).  https://doi.org/10.1021/acsami.5b02782 CrossRefGoogle Scholar
  8. 8.
    Divya Bharathi, N., Sivasankaran, K.: Influence of metal contact on the performance enhancement of monolayer MoS2 transistor. Superlattices Microstruct. 120, 479–486 (2018).  https://doi.org/10.1016/j.spmi.2018.06.016 CrossRefGoogle Scholar
  9. 9.
    Yuan, Z., Hou, J., Liu, K.: Interfacing 2D semiconductors with functional oxides: fundamentals, properties, and applications. Crystals 7, 265 (2017).  https://doi.org/10.3390/cryst7090265 CrossRefGoogle Scholar
  10. 10.
    Kc, S., Longo, R.C., Wallace, R.M., Cho, K.: Computational study of MoS2/HfO2 defective interfaces for nanometer-scale electronics. ACS Omega 2, 2827–2834 (2017).  https://doi.org/10.1021/acsomega.7b00636 CrossRefGoogle Scholar
  11. 11.
    Hu, Z., Prasad Sinha, D., Lee, J.U., Liehr, M.: Substrate dielectric effects on graphene field effect transistors. J. Appl. Phys. (2014).  https://doi.org/10.1063/1.4879236 CrossRefGoogle Scholar
  12. 12.
    Ganapathi, K.L., Bhattacharjee, S., Mohan, S., Bhat, N.: High-performance HfO2 back gated multilayer MoS2 transistors. IEEE Electron Dev 37, 797–800 (2016)Google Scholar
  13. 13.
    Su, X., Cui, H., Ju, W., Yong, Y., Li, X.: First-principles investigation of MoS2 monolayer adsorbed on SiO2 (0001) surface. Mod. Phys. Lett. B 31, 1750229 (2017).  https://doi.org/10.1142/S0217984917502293 CrossRefGoogle Scholar
  14. 14.
    Liu, X., Chai, Y., Liu, Z.: Investigation of chemical vapour deposition MoS2 field effect transistors on SiO2 and ZrO2 substrates. Nanotechnology 28, 164004 (2017).  https://doi.org/10.1088/1361-6528/aa610a CrossRefGoogle Scholar
  15. 15.
    Dev, D., Krishnaprasad, A., Kalita, H., Das, S., Rodriguez, V., Calderon Flores, J., Zhai, L., Roy, T.: High quality gate dielectric/MoS2 interfaces probed by the conductance method. Appl. Phys. Lett. 112, 232101 (2018).  https://doi.org/10.1063/1.5028404 CrossRefGoogle Scholar
  16. 16.
    Han, G., Yoon, Y.: Contact-dependent performance variability of monolayer MoS2 field-effect transistors. Appl. Phys. Lett. 105, 2–7 (2014).  https://doi.org/10.1063/1.4902866 CrossRefGoogle Scholar
  17. 17.
    Wang, J., Cheng, Z., Chen, Z., Xu, J.B., Tsang, H.K., Shu, C.: Graphene photodetector integrated on silicon nitride waveguide. J. Appl. Phys. 117, 1–6 (2015).  https://doi.org/10.1063/1.4917378 CrossRefGoogle Scholar
  18. 18.
    ATK: Atomistix toolkit manual (ATK), https://quantumwise.com/
  19. 19.
    Pack, J.D., Monkhorst, H.J.: “Special points for Brillouin-zone integrations”—a reply. Phys. Rev. B. 16, 1748–1749 (1977).  https://doi.org/10.1103/PhysRevB.16.1748 CrossRefGoogle Scholar
  20. 20.
    Jin, Z., Li, X., Mullen, J.T., Kim, K.W.: Intrinsic transport properties of electrons and holes in monolayer transition metal dichalcogenides. Phys. Rev. B 90, 045422 (2014).  https://doi.org/10.1103/PhysRevB.90.045422 CrossRefGoogle Scholar
  21. 21.
    Kang, J., Tongay, S., Zhou, J., Li, J., Wu, J.: Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. (2013).  https://doi.org/10.1063/1.4774090 CrossRefGoogle Scholar
  22. 22.
    Kumar, A., Ahluwalia, P.K.: Tunable dielectric response of transition metals dichalcogenides MX2 (M = Mo, W; X = S, Se, Te): effect of quantum confinement. Phys. B Condens. Matter. 407, 4627–4634 (2012).  https://doi.org/10.1016/j.physb.2012.08.034 CrossRefGoogle Scholar
  23. 23.
    Wickramaratne, D., Zahid, F., Lake, R.K.: Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. J. Chem. Phys. (2014).  https://doi.org/10.1063/1.4869142 CrossRefGoogle Scholar
  24. 24.
    SILVACO: Silvaco, www.silvaco.com
  25. 25.
    Sengupta, A., Ghosh, R.K., Mahapatra, S.: Performance analysis of strained monolayer MoS2 MOSFET. IEEE Trans. Electron Devices 60, 2782–2787 (2013).  https://doi.org/10.1109/TED.2013.2273456 CrossRefGoogle Scholar
  26. 26.
    Huang, X., Liu, W., Zhang, A., Zhang, Y., Wang, Z.: Ballistic transport in single-layer MoS2 piezotronic transistors. Nano Res. 9, 282–290 (2016).  https://doi.org/10.1007/s12274-015-0908-6 CrossRefGoogle Scholar
  27. 27.
    Khan, S.U.Z., Khosru, Q.D.M.: Quantum mechanical electrostatics and transport simulation and performance evaluation of short channel monolayer WSe2 field effect transistor. ECS Trans. 66, 11–18 (2015).  https://doi.org/10.4208/cicc.2014.v2.n1.3 CrossRefGoogle Scholar
  28. 28.
    Tiwari, D.L., Sivasankaran, K.: Impact of substrate on performance of band gap engineered graphene field effect transistor. Superlattices Microstruct. 113, 244–254 (2018).  https://doi.org/10.1016/j.spmi.2017.11.004 CrossRefGoogle Scholar
  29. 29.
    Naderi, A.: Double gate graphene nanoribbon field effect transistor with electrically induced junctions for source and drain regions. J. Comput. Electron. 15, 347–357 (2016).  https://doi.org/10.1007/s10825-015-0781-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronics EngineeringVellore Institute of TechnologyVelloreIndia

Personalised recommendations