Advertisement

Journal of Computational Electronics

, Volume 18, Issue 1, pp 279–292 | Cite as

Ultracompact ultrafast-switching-speed all-optical 4 × 2 encoder based on photonic crystal

  • Tamer S. MostafaEmail author
  • Nazmi A. Mohammed
  • El-Sayed M. El-Rabaie
Article

Abstract

A novel two-dimensional photonic-crystal-based all-optical encoder was designed, tested, and optimized. The structure is built on a linear square-lattice photonic crystal platform. An ultracompact, simple design occupying an area of only 128.52 μm2 is constructed, 50 % smaller than the smallest design known to date. Ultrafast switching speed with the lowest known delay time is achieved. The proposed design consists of one ring resonator with cylindrical silicon rods suspended in air. No auxiliary or bias input is required for its operation. The proposed platform is not sensitive to the applied input phase shift. Finite-difference time-domain and plane-wave expansion methods were used to analyze the structure and optimize the radius of the rods at 1.525 µm, with radius of the inner rods of 0.19a, for successful operation, resulting in ultrafast switching speed of 10 THz and shorter delay time reaching 0.1 ps. This maximum switching speed is two times faster than recent literature reports. The contrast ratio is calculated to reach an acceptable record of 7.1138 dB. The trade-off between the switching speed and contrast ratio was also examined.

Keywords

All-optical encoder Photonic crystal Ring resonator Line defect Switching speed Finite-difference time-domain (FDTD) analysis Plane-wave expansion (PWE) 

References

  1. 1.
    Williams, D.B., Madisetti, V.: Digital Signal Processing Handbook, 1st edn, p. 1500. CRC Press, Boca Raton (1997)Google Scholar
  2. 2.
    Spors, S., Erbes, V., Geier, M., Schultz, F.: Digital Signal Processing (2015). https://dsp-nbsphinx.readthedocs.io/en/nbsphinx-experiment/
  3. 3.
    Proakis, J.G., Manolakis, D.G.: Digital Signal Processing: Principles, Algorithms, and Applications, 4/e. Pearson Prentice Hall, Upper Saddle River (2007)Google Scholar
  4. 4.
    Mano, M.: Computer System Architecture, 3rd edn. Prentice Hall, Englewood Cliffs (1990)zbMATHGoogle Scholar
  5. 5.
    Morris, M.M.: Computer Engineering Hardware Design, 3rd edn. Prentice Hall, Englewood Cliffs (1988)Google Scholar
  6. 6.
    Liu, Y., Qin, F., Meng, Z.-M., Zhou, F., Mao, Q.-H., Li, Z.-Y.: All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs. Opt. Express 19, 1945–1953 (2011).  https://doi.org/10.1364/OE.19.001945 CrossRefGoogle Scholar
  7. 7.
    Wabnitz, S., Eggleton, B.J.: All-optical signal processing: data communication and storage, vol. 512. Springer, Berlin (2015)Google Scholar
  8. 8.
    Chen, Y., Zhang, H., Liu, F., Gu, H.: An optimization framework for routing on optical Network-on-Chips (ONoCs) from a networking perspective. In: IEEE International Conference on Signal Processing, Communications and Computing ICSPCC (2015).  https://doi.org/10.1109/icspcc.2015.7338820
  9. 9.
    Feldmann, J., Stegmaier, M., Gruhler, N., Rios, C., Wright, C.D., Bhaskharan, H., Pernice, W.H.P.: All-optical signal processing using phase-change nanophotonics. In: 19th International Conference on Transparent Optical Networks, pp. 1–3 (2017).  https://doi.org/10.1109/icton.2017.8024746
  10. 10.
    Yan, L., Willner, A.E., Wu, X., Yi, A., Bogoni, A., Chen, Z.Y., Jiang, H.Y.: All-optical signal processing for ultrahigh speed optical systems and networks. J. Lightwave Technol. 30, 3760–3770 (2012).  https://doi.org/10.1109/JLT.2012.2205134 CrossRefGoogle Scholar
  11. 11.
    Naughton, T.J., Woods, D.: Optical computing. Comput. Complex. Theory Tech. Appl. 9781461418009, 2138–2156 (2012).  https://doi.org/10.1007/978-1-4614-1800-9_135 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Abdeldayem, H., Frazier, D.O.: Optical computing: need and challenge. Commun. ACM 50, 60–62 (2007).  https://doi.org/10.1145/1284621.1284649 CrossRefGoogle Scholar
  13. 13.
    Shehata, M.I., Mohammed, N.A.: Design and optimization of novel two inputs optical logic gates (NOT, AND, OR and NOR) based on single commercial TW-SOA operating at 40 Gbit/s. Opt. Quantum Electron. 48, 1–16 (2016).  https://doi.org/10.1007/s11082-016-0602-2 CrossRefGoogle Scholar
  14. 14.
    Kaur, S., Kaler, R.-S., Kamal, T.-S.: All-optical binary full adder using logic operations based on the nonlinear properties of a semiconductor optical amplifier. J. Opt. Soc. Korea 19, 222–227 (2015).  https://doi.org/10.3807/JOSK.2015.19.3.222 CrossRefGoogle Scholar
  15. 15.
    Vo, T.D., Schröder, J., Pant, R., Pelusi, M., Madden, S., Choi, D.-Y., Bulla, D., Luther-Davies, B., Eggleton, B.: Photonic chip based all-optical XOR gate for phase-encoded signals. In: Optics Fiber Communication Conference, Fiber Optics Engineering Conference 2011, OWG2 (2011).  https://doi.org/10.1364/ofc.2011.owg2
  16. 16.
    Zhang, X., Wang, Y., Sun, J., Liu, D., Huang, D.: All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs. Opt. Express 12, 361–366 (2004).  https://doi.org/10.1364/OPEX.12.000361 CrossRefGoogle Scholar
  17. 17.
    Ma, S., Chen, Z., Sun, H., Dutta, N.K.: High speed all optical logic gates based on quantum dot semiconductor optical amplifiers. Opt. Express 18, 6417–6422 (2010).  https://doi.org/10.1364/OE.18.006417 CrossRefGoogle Scholar
  18. 18.
    Wang, J., Sun, J., Sun, Q.: Experimental observation of a 1.5 micron band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation. Opt. Lett. 31, 1711–1713 (2006).  https://doi.org/10.1364/ol.31.001711 CrossRefGoogle Scholar
  19. 19.
    Wang, J., Sun, J., Sun, Q.: Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation. IEEE Photonics Technol. Lett. 19, 541–543 (2007).  https://doi.org/10.1109/LPT.2007.893893 CrossRefGoogle Scholar
  20. 20.
    Wang, J., Sun, J., Sun, Q., Wang, D., Zhang, X., Huang, D., Fejer, M.M.: PPLN-based flexible optical logic and gate. IEEE Photonics Technol. Lett. 20, 211–213 (2008).  https://doi.org/10.1109/LPT.2007.913227 CrossRefGoogle Scholar
  21. 21.
    Xiong, M., Lei, L., Ding, Y., Huang, B., Ou, H., Peucheret, C., Zhang, X.: All-optical 10 Gb/s AND logic gate in a silicon microring resonator. Opt. Express 21, 25772–25779 (2013).  https://doi.org/10.1364/OE.21.025772 CrossRefGoogle Scholar
  22. 22.
    Rakshit, J.K., Roy, J.N., Chattopadhyay, T.: All-optical XOR/XNOR logic gate using micro-ring resonators. In: CODEC 2012—5th International Conference on Computers and Devices Communication (2012).  https://doi.org/10.1109/codec.2012.6509327
  23. 23.
    Johnson, S.G., Joannopoulos, J.D.: Introduction to photonic crystals: Bloch’s theorem, band diagrams, and gaps (but no defects). Photonic Cryst. Tutor. (2003).  https://doi.org/10.1364/oe.20.022743 Google Scholar
  24. 24.
    Sakoda, K.: Optical Properties of Photonic Crystals, vol. 80, p. 258. Springer, Berlin (2005).  https://doi.org/10.1007/b138376 CrossRefGoogle Scholar
  25. 25.
    Joannopoulos, J.J.D., Johnson, S., Winn, J.N.J., Meade, R.R.D.: Photonic crystals: molding the flow of light. Time (2008).  https://doi.org/10.1063/1.1586781 zbMATHGoogle Scholar
  26. 26.
    Younis, R.M., Areed, N.F.F., Obayya, S.S.A.: Fully integrated AND and OR optical logic gates. IEEE Photonics Technol. Lett. 26, 1900–1903 (2014).  https://doi.org/10.1109/LPT.2014.2340435 CrossRefGoogle Scholar
  27. 27.
    Rani, P., Kalra, Y., Sinha, R.K.: Realization of and gate in y shaped photonic crystal waveguide. Opt. Commun. 298–299, 227–231 (2013).  https://doi.org/10.1016/j.optcom.2013.02.014 CrossRefGoogle Scholar
  28. 28.
    Alipour-Banaeia, H., Serajmohammadi, S., Mehdizadeh, F.: NAND gate based on nonlinear photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 130, 1214–1221 (2017).  https://doi.org/10.1515/joc-2015-0025 CrossRefGoogle Scholar
  29. 29.
    Mehdizadeh, F., Soroosh, M.: Designing of all optical NOR gate based on photonic crystal. Indian J. Pure Appl. Phys. 54, 35–39 (2016)Google Scholar
  30. 30.
    Zhu, Z.-H., Ye, W.-M., Ji, J.-R., Yuan, X.-D., Zen, C.: High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals. Opt. Express 14, 1783–1788 (2006).  https://doi.org/10.1364/OE.14.001783 CrossRefGoogle Scholar
  31. 31.
    Azuma, H.: Quantum computation with Kerr-nonlinear photonic crystals. J. Phys. D Appl. Phys. 41, 25102 (2008).  https://doi.org/10.1088/0022-3727/41/2/025102 CrossRefGoogle Scholar
  32. 32.
    Notomi, M., Tanabe, T., Shinya, A., Kuramochi, E., Taniyama, H., Mitsugi, S., Morita, M.: Nonlinear and adiabatic control of high-Q photonic crystal nanocavities. Opt. Express 15, 17458–17481 (2007).  https://doi.org/10.1364/OE.15.017458 CrossRefGoogle Scholar
  33. 33.
    Zhang, Y., Zhang, Y., Li, B.: Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals. Opt. Express 15, 9287 (2007).  https://doi.org/10.1364/OE.15.009287 CrossRefGoogle Scholar
  34. 34.
    Lee, K.-Y., Lin, J.-M., Yang, Y.-C., Yang, Y.-B., Wu, J.-S., Lin, Y.-J., Lee, W.-Y.: The designs of XOR logic gates based on photonic crystals. Proc. SPIE 7135, 71353Y–71353Y–8 (2008).  https://doi.org/10.1117/12.803465 Google Scholar
  35. 35.
    Sharifi, H., Hamidi, S.M., Navi, K.: A new design procedure for all-optical photonic crystal logic gates and functions based on threshold logic. Opt. Commun. 370, 231–238 (2016).  https://doi.org/10.1016/j.optcom.2016.03.020 CrossRefGoogle Scholar
  36. 36.
    Gholamnejad, S., Zavvari, M.: Design and analysis of all-optical 4–2 binary encoder based on photonic crystal. Opt. Quantum Electron. (2017).  https://doi.org/10.1007/s11082-017-1144-y Google Scholar
  37. 37.
    Ribeiro, R.M., Lucarz, F., Fracasso, B.: Proposal and design of an all-optical encoder for digitising radio-over-fibre transceivers. In: Proceedings of 2013 18th European Conference on Network and Optical Communication NOC 2013, 2013 8th Conference on Optical Cabling Infrastructure, OC I 2013, pp. 35–42 (2013).  https://doi.org/10.1109/noc-oci.2013.6582865
  38. 38.
    Lee, K.-Y., Yang, Y.-C., Lin, Y.-J., Lee, W.-Y., Lee, C.-C., Wong, S.H.: The designs of 4 × 2 encoder based on photonic crystals. Proc. SPIE 7630, Passive Components and Fiber-based Devices VI, 76300I (1 December 2009). https://www.spiedigitallibrary.org/conference-proceedings-of-spie/7630/1/The-designs-of-42-encoder-based-on-photonic-crystals/10.1117/12.852155.short?SSO=1&tab=ArticleLink
  39. 39.
    Mehdizadeh, Farhad, Soroosh, Mohammad, Alipour-Banaei, Hamed: Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11(1), 29–35 (2016).  https://doi.org/10.1049/iet-opt.2016.0022 CrossRefGoogle Scholar
  40. 40.
    Yang, Y.P., Lin, K.C., Yang, I.C., Lee, K.Y., Lee, W.Y., Tsai, Y.T.: All-optical photonic-crystal encoder capable of operating at multiple wavelengths. Optik (Stuttg) 142, 354–359 (2017).  https://doi.org/10.1016/j.ijleo.2017.05.067 CrossRefGoogle Scholar
  41. 41.
    Hassangholizadeh-Kashtiban, M., Sabbaghi-Nadooshan, R., Alipour-Banaei, H.: A novel all optical reversible 4 × 2 encoder based on photonic crystals. Opt. Int. J. Light Electron Opt. 126, 2368–2372 (2015).  https://doi.org/10.1016/j.ijleo.2015.05.140 CrossRefGoogle Scholar
  42. 42.
    Ouahab, I., Naoum, R.: A novel all optical 4 × 2 encoder switch based on photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. (2016).  https://doi.org/10.1016/j.ijleo.2016.05.080 Google Scholar
  43. 43.
    Alipour-Banaei, H., Rabati, M.G., Abdollahzadeh-Badelbou, P., Mehdizadeh, F.: Application of self-collimated beams to realization of all optical photonic crystal encoder. Phys. E Low Dimens. Syst. Nanostruct. 75, 77–85 (2016).  https://doi.org/10.1016/j.physe.2015.08.011 CrossRefGoogle Scholar
  44. 44.
    Moniem, T.A.: All-optical digital 4 x 2 encoder based on 2D photonic crystal ring resonators. J. Mod. Opt. 63, 735–741 (2016).  https://doi.org/10.1080/09500340.2015.1094580 CrossRefGoogle Scholar
  45. 45.
    Kunz, K.S., Luebbers, R.J.: The finite difference time domain method for electromagnetism. IEEE Trans. Antennas Propag. 40, 49–56 (1992)CrossRefGoogle Scholar
  46. 46.
    Leung, K.M., Liu, Y.F.: Photon band structures: the plane-wave method. Phys. Rev. B 41, 10188–10190 (1990).  https://doi.org/10.1103/PhysRevB.41.10188 CrossRefGoogle Scholar
  47. 47.
    Ho, K.M., Chan, C.T., Soukoulis, C.M.: Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152–3155 (1990).  https://doi.org/10.1103/PhysRevLett.65.3152 CrossRefGoogle Scholar
  48. 48.
    Shaik, E.H., Rangaswamy, N.: Improved design of all-optical photonic crystal logic gates using T-shaped waveguide. Opt. Quantum Electron. 48, 1–15 (2016).  https://doi.org/10.1007/s11082-015-0279-y CrossRefGoogle Scholar
  49. 49.
    Taflove, A., Hagness, S.C.: Computational electrodynamics: the finite-difference time-domain method. MA Artech House 1995(58), 1817–1818 (1995).  https://doi.org/10.1016/0021-9169(96)80449-1 zbMATHGoogle Scholar
  50. 50.
    Wu, C.J., Liu, C.P., Ouyang, Z.: Compact and low-power optical logic NOT gate based on photonic crystal waveguides without optical amplifiers and nonlinear materials. Appl. Opt. 51, 680 (2012).  https://doi.org/10.1364/AO.51.000680 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Communications and Electronics, Faculty of EngineeringEgyptian Russian UniversityCairoEgypt
  2. 2.Photonic Research Lab, College of EngineeringShaqra UniversityDawadmiKingdom of Saudi Arabia
  3. 3.Electronics and Communication Engineering DepartmentObour InstitutesObour CityEgypt
  4. 4.Department of Electronics and Electrical Communications Engineering, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt

Personalised recommendations