Journal of Computational Electronics

, Volume 17, Issue 4, pp 1615–1620 | Cite as

A semiphysical current–voltage model with a contact ideality factor for disordered thin-film transistors

  • Sungsik LeeEmail author


A semiphysical current–voltage model for disordered thin-film transistors is presented. In the proposed model, a power-law function is employed to describe the drift current in the above-threshold region while a Fermi–Dirac function-like exponential formula is introduced to describe the diffusion current in the subthreshold region. In particular, this subthreshold current model is more physically meaningful compared with the typical exponential model. In addition, it also contains an ideality factor for the source and drain contacts, explaining the vertical separation of the drain current for different drain voltages in the subthreshold region. Using the proposed approach, analytical expressions are derived, providing good agreement with experimental results in both the linear and saturation regimes.


Compact modeling Current–voltage relation Disordered semiconductors Amorphous materials Thin-film transistors 



This work was supported by a 2-Year Research Grant of Pusan National University.


  1. 1.
    Leroux, T.: Static and dynamic analysis of amorphous-silicon field-effect transistors. Solid State Electron. 29(1), 47–58 (1986)CrossRefGoogle Scholar
  2. 2.
    Shur, M.S., Slade, H.C., Jacunski, M.D., Owusu, A.A., Ytterdal, T.: SPICE models for amorphous silicon and polysilicon thin film transistors. J. Electrochem. Soc. 144(8), 2833–2839 (1997)CrossRefGoogle Scholar
  3. 3.
    Cai, M.X., Yao, R.H.: A drain current model for amorphous InGaZnO thin film transistors considering temperature effects. Solid State Electron. 141, 23–30 (2018)CrossRefGoogle Scholar
  4. 4.
    Sedra, A.S., Smith, K.C.: Microelectronic circuits, 5th edn, p. 324. Oxford University Press, New York (2011)Google Scholar
  5. 5.
    Shur, M., Hack, M., Shaw, J.G.: A new analytic model for amorphous silicon thin-film transistors. J. Appl. Phys. 66(7), Art. no. 3371 (1989)CrossRefGoogle Scholar
  6. 6.
    Lee, S., et al.: Trap-limited and percolation conduction mechanisms in amorphous oxide semiconductor thin film transistors. Appl. Phys. Lett. 98, 203508 (2011)CrossRefGoogle Scholar
  7. 7.
    Lee, S., Jeon, S., Nathan, A.: Modeling sub-threshold current–voltage characteristics in thin film transistors. J. Disp. Technol. 9(11), 883–889 (2013)CrossRefGoogle Scholar
  8. 8.
    Sze, S.M.: Physics of semiconductor devices, 2nd edn. Wiley, Hoboken (1981)Google Scholar
  9. 9.
    Kim, S., Ha, T.-J., Sonar, P., Dodabalapur, A.: Charge transport in deep and shallow states in a high-mobility polymer FET. IEEE Trans. Electron Devices 63(3), 1254–1259 (2016)CrossRefGoogle Scholar
  10. 10.
    Guangwei, Xu, Gao, Nan, Congyan, Lu, Wang, Wei, Ji, Zhuoyu, Bi, Chong, Han, Zhiheng, Nianduan, Lu, Yang, Guanhua, Li, Yuan, Liu, Qi, Li, Ling, Liu, Ming: Bulk-like electrical properties induced by contact-limited charge transport in organic diodes: revised space charge limited current. Adv. Electron. Mater. 4, 1700493 (2018)CrossRefGoogle Scholar
  11. 11.
    Li, Ling, Nianduan, Lu, Liu, Ming, Bässler, Heinz: General Einstein relation model in disordered organic semiconductors under quasiequilibrium. Phys. Rev. B 90, 214107 (2014)CrossRefGoogle Scholar
  12. 12.
    Kamiya, T., Nomura, K., Hosono, H.: Present status of amorphous In–Ga–Zn–O thin-film transistors. Sci. Technol. Adv. Mater. 11, 044305 (2010)CrossRefGoogle Scholar
  13. 13.
    Cheng, X., Lee, S., Yao, G., Nathan, A.: TFT compact modeling. J. Disp. Technol. 12(9), 898–906 (2016)CrossRefGoogle Scholar
  14. 14.
    Lee, S., Nathan, A.: Conduction threshold in accumulation-mode InGaZnO thin film transistors. Sci. Rep. 6(22567), 1–9 (2016)Google Scholar
  15. 15.
    Ortiz-Conde, A., et al.: A review of recent MOSFET threshold voltage extraction methods. Microelectron. Reliab. 42, 583–596 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics EngineeringPusan National UniversityPusanRepublic of Korea

Personalised recommendations