Journal of Computational Electronics

, Volume 17, Issue 4, pp 1797–1806 | Cite as

Impact of triple-material gate and highly doped source/drain extensions on sensitivity of DNA biosensors

  • M. OuarghiEmail author
  • Z. Dibi
  • N. Hedjazi


Gate engineering and highly doped source/drain region have been investigated to design a new DNA sensor for use in biomedical applications based on a double gate (DG) dielectric modulated (DM) junctionless (JL) metal oxide semiconductor field effect transistor (MOSFET) with triple material (TM) gate. Based on the dielectric modulation effect, DNA molecules in the nanogap cavity change due to the charge density of biomolecules, producing a change in the threshold voltage of the device. Analytical and numerical analysis was carried out to reveal the impact of physical parameters on the sensitivity of the proposed biosensor. Various characteristics, such as the surface potential, threshold voltage, and drain current were also investigated. The effectiveness of the proposed TM-DG-DM-JL-MOSFET structure with highly doped source/drain extensions is confirmed by comparison of the results with those for a conventional single-materiel (SM) gate DM-JL-MOSFET, revealing a good improvement in sensitivity and making the proposed structure an attractive solution for use in DNA-based sensor applications.


Biosensor Dielectric modulation DNA sensors DMFET Nanogap Sensitivity Triple-material gate Gate engineering 


  1. 1.
    Kim, J.M., Jha, S.K., Chand, R., Lee, D.H., Kim, Y.S.: Flexible pentacene thin film transistors as DNA hybridization sensor. In: IEEE International Conference on Nano/Micro Engineered and Molecular Systems. Proceeding, Kaohsiung, Taiwan, pp. 421–424 (2011)Google Scholar
  2. 2.
    Patolsky, F., Lichtenstein, A., Willner, I.: Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nat. Biotechnol. 19, 253–257 (2001)CrossRefGoogle Scholar
  3. 3.
    Nam, J.M., Stoveva, S.I., Mirkin, C.A.: Bio-bar-code-based DNA detection with PCR-like sensitivity. J. Am. Chem. Soc. 126, 5932–5933 (2004)CrossRefGoogle Scholar
  4. 4.
    Ramsay, G.: DNA chip: state-of-the art. Nat. Biotechnol. 16, 40–44 (1998)CrossRefGoogle Scholar
  5. 5.
    Marshall, A., Hhodgson, J.: DNA chips: an array of possibilities. Nat. Biotechnol. 16, 27–31 (1998)CrossRefGoogle Scholar
  6. 6.
    Pividori, M.I., Merkoci, A., Alegret, S.: Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods. Biosens. Bioelectron. 15, 291–303 (2000)CrossRefGoogle Scholar
  7. 7.
    Kim, C.H., Jung, C., Park, H.G., Choi, Y.K.: Novel dielectric modulated field-effect transistor for label-free DNA detection. Biochip J. 2(2), 127–134 (2008)Google Scholar
  8. 8.
    Jang, D.Y., et al.: Sublithographic vertical gold nano-gap for label-free electrical detection of protein–ligand binding. J. Vac. Sci. Technol. B25, 443–447 (2007)CrossRefGoogle Scholar
  9. 9.
    Peng, H., et al.: Label-free electrochemical DNA sensor based on functionalized conducting copolymer. Biosens. Bioelectron. 20, 1821–1828 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chen, J.-C., Chou, J.-C., Sun, T.-P., Hsiung, S.-K.: Portable urea biosensor based on the extended-gate field effect transistor. Sens. Actuators B Chem. 91(1–3), 180–186 (2003)CrossRefGoogle Scholar
  11. 11.
    Kim, D.-S., Park, J.-E., et al.: An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes. Sens. Actuator B Chem. 117(2), 488–494 (2006)CrossRefGoogle Scholar
  12. 12.
    Schöning, M.J., Poghossian, A.: Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst 127(9), 1137–1151 (2002)CrossRefGoogle Scholar
  13. 13.
    Bergveld, P.: Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B Chem. 88(1), 1–20 (2003)CrossRefGoogle Scholar
  14. 14.
    Park, K.Y., Choi, S.B., Lee, M., Sohn, B.K., Choi, S.Y.: ISFET glucose sensor system with fast recovery characteristics by employing electrolysis. Sens. Actuators B Chem. 83(1–3), 90–97 (2002)CrossRefGoogle Scholar
  15. 15.
    Phogossian, A., Schoning, J., et al.: An ISFET-based penicillin sensor with high sensitivity, low detection limit and long lifetime. Sens. Actuators B Chem. 76(1–3), 519–526 (2001)CrossRefGoogle Scholar
  16. 16.
    Choi, J.M., Han, J.W., Choi, S.J., Choi, Y.K.: Analytical modeling of a nanogap-embedded FET for application as a biosensor. IEEE Trans. Electron Devices 57(12), 3477–3484 (2010)CrossRefGoogle Scholar
  17. 17.
    Cui, Y., Wei, Q., Park, H., Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001)CrossRefGoogle Scholar
  18. 18.
    Stern, E., Klemic, J.F., et al.: Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127), 519–523 (2007)CrossRefGoogle Scholar
  19. 19.
    Li, Z., Chen, Y., et al.: Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett. 4(2), 245–247 (2004)CrossRefGoogle Scholar
  20. 20.
    Hahm, J., Lieber, C.M.: Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4(1), 51–54 (2004)CrossRefGoogle Scholar
  21. 21.
    Curreli, M., Zhang, R., et al.: Real-time, label-free detection of biological entities using nanowire-based FETs. IEEE Trans. Nanotechnol. 7(6), 651–667 (2008)CrossRefGoogle Scholar
  22. 22.
    Qi, P., Vermesh, O., Grecu, M., et al.: Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett. 3(3), 347–351 (2003)CrossRefGoogle Scholar
  23. 23.
    Star, A., Tu, E., Niemann, J., et al.: Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc. Natl. Acad. Sci. USA 103(4), 921–926 (2006)CrossRefGoogle Scholar
  24. 24.
    Martinez, M.T., Tseng, Y.-C., et al.: Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors. Nano Lett. 9(2), 530–536 (2009)CrossRefGoogle Scholar
  25. 25.
    Im, H., Huang, X.-J., Gu, B., Choi, Y.-K.: A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2(7), 430–434 (2007)CrossRefGoogle Scholar
  26. 26.
    Kim, C.-H., Jung, C., Lee, K.-B., Park, H.G., Choi, Y.-K.: Label-free DNA detection with a nanogap embedded complementary metal oxide semiconductor. Nanotechnology 22(13), 135502-1–135502-5 (2011)CrossRefGoogle Scholar
  27. 27.
    Gu, B., Park, T.J., Ahn, J.-H., Huang, X.-J., Lee, S.Y., Choi, Y.-K.: Nanogap field-effect transistor biosensors for electrical detection of avian influenza. Small 5(21), 2407–2412 (2009)CrossRefGoogle Scholar
  28. 28.
    Im, M., Ahn, J.-H., Han, J.-W., Park, T.J., Lee, S.Y., Choi, Y.K.: Development of a point-of-care testing platform with a nanogap-embedded separated double-gate field effect transistor array and its readout system for detection of avian influenza. IEEE Sens. J. 11(2), 351–360 (2011)CrossRefGoogle Scholar
  29. 29.
    Kim, C.-H., Jung, C., Park, H.G., Choi, Y.-K.: Novel dielectric-modulated field-effect transistor for label-free DNA detection. Biochip J. 2(2), 127–134 (2008)Google Scholar
  30. 30.
    Kim, S., Baek, D., Kim, J.-Y., Choi, S.-J., Seol, M.-L., Choi, Y.-K.: A transistor-based biosensor for the extraction of physical properties from biomolecules. Appl. Phys. Lett. 101(7), 073703-1–073703-4 (2012)Google Scholar
  31. 31.
    Kim, S., Ahn, J.-H., Park, T.J., Lee, S.Y., Choi, Y.-K.: A biomolecular detection method based on charge pumping in a nanogap embedded field-effect-transistor biosensor. Appl. Phys. Lett. 94(24), 243903 (2009)CrossRefGoogle Scholar
  32. 32.
    Kim, C.-H., Ahn, J.-H., Lee, K.-B., Jung, C., Park, H.G., Choi, Y.-K.: A new sensing metric to reduce data fluctuations in a nanogap embedded field-effect transistor biosensor. IEEE Trans. Electron Devices 59(10), 2825–2831 (2012)CrossRefGoogle Scholar
  33. 33.
    Kim, S., Ahn, J.-H., Park, T.J., Lee, S.Y., Choi, Y.-K.: Charge pumping technique to analyze the effect of intrinsically retained charges and extrinsically trapped charges in biomolecules by use of a nanogap embedded biotransistor. Appl. Phys. Lett. 96(5), 053701 (2010)CrossRefGoogle Scholar
  34. 34.
    Kannan, N., Kumar, M.J.: Dielectric-modulated impact-ionization MOS transistor as a labelfree biosensor. IEEE Electron Device Lett. 34(12), 1575–1577 (2013)CrossRefGoogle Scholar
  35. 35.
    Kim, S., Ahn, J.H., Park, T.J., Lee, S.Y., Choi, Y.K.: Comprehensive study of a detection mechanism and optimization strategies to improve sensitivity in a nanogap-embedded biotransistor. J. Appl. Phys. 107(11), 114705 (2010)CrossRefGoogle Scholar
  36. 36.
    Kanungo, S., Chattopadhyay, S., Gupta, P.S., Rahaman, H.: Comparative performance analysis of the dielectrically modulated full gate and short-gate tunnel FET-based biosensors. IEEE Trans. Electron Devices 62(3), 994–1001 (2015)CrossRefGoogle Scholar
  37. 37.
    Ajay, S., Narang, R., Saxena, M., Gupta, M.: Investigation of dielectric modulated (DM) double gate (DG) junctionless MOSFETs for application as a bio-sensors. Superlattices Microstruct. 85, 557–572 (2015)CrossRefGoogle Scholar
  38. 38.
    Parihar, M.S., Kranti, A.: Enhanced sensitivity of double gate junctionless transistor architecture for bio-sensing applications. Nanotechnology 26, 145201 (2015)CrossRefGoogle Scholar
  39. 39.
    Chakraborty, A., Sarkar, A.: Analytical modeling and sensitivity analysis of dielectric-modulated junction-less gate stack surrounding gate MOSFET (JLGS-SRG) for application as biosensor. J. Comput. Electron. 16, 556–567 (2017)CrossRefGoogle Scholar
  40. 40.
    Chebaki, E., Djeffal, F., Ferhati, H., Bentrcia, T.: Improved analog/RF performance of double gate junctionless MOSFET using both gate material engineering and drain/source extensions. Superlattices Microstruct. 92, 80–91 (2016)CrossRefGoogle Scholar
  41. 41.
    Razavi, P., Orouji, A.A.: Dual material gate oxide stack symmetric double gate MOSFET: improving short channel effects of nanoscale double gate MOSFET. In: Electronics Conference, 2008. BEC 2008. 11th International Biennial Baltic, IEEE, pp. 83–86 (2008)Google Scholar
  42. 42.
    Ahangari, Z.: Performance assessment of dual material gate dielectric modulated nanowire junctionless MOSFET for ultrasensitive detection of biomolecules. RSC Adv. 6(92), 89185–89191 (2016)CrossRefGoogle Scholar
  43. 43.
    Long, W., Ou, H., Kuo, J.M., Chin, K.K.: Dual material gate (DMG) field effect transistor. IEEE Trans. Electron Devices 46, 865–870 (1999)CrossRefGoogle Scholar
  44. 44.
    Kumar, M.J., Chaudhary, A.: Two-dimensional analytical modeling of fully depleted DMG SOI MOS-FET and evidence for diminished SCEs. IEEE Trans. Electron Devices 51(4), 569–574 (2004)CrossRefGoogle Scholar
  45. 45.
    Jouri, M., ShahrokhAbadi, M.H.: Analytical investigation of triple-material cylindrical gate surrounded (TM-CGS) MOSFETs with high-K material oxide. Phys. J. 1(3), 325–330 (2015)Google Scholar
  46. 46.
    Baral, B., Das, A.K., De, D., Sarkar, A.: An analytical model of triple-material double gate metal oxide semiconductor field-effect transistor to suppress short channel effects. Int. J. Numer. Model. 29, 47–62 (2015)CrossRefGoogle Scholar
  47. 47.
    Razavi, P., Orouji, A.A.: Nanoscale triple material double gate (TM-DG) MOSFET for improving short channel effects. In: Advances in Electronics and Micro-electronics, 2008, Valencia, Spain, 29 September–4 October (2008)Google Scholar
  48. 48.
    Tiwari, P.K., Dubey, S., Singh, M., Jit, S.: A two-dimensional analytical model for threshold voltage of short-channel triple-material-gate metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 108, 074508 (2010)CrossRefGoogle Scholar
  49. 49.
    Dubey, S., Santra, A., Saramekala, G., Kumar, M., Tiwari, P.K.: An analytical threshold voltage model for triple-material cylindrical gate-all-around (TM-CGAA) MOSFETs. IEEE Trans. Electron Nanotechnol. 12(5), 766–774 (2013)CrossRefGoogle Scholar
  50. 50.
    Kinsella, J.M., Ivanisevic, A.: Taking charge of biomolecules. Nat. Nanotechnol. 2, 596–597 (2007)CrossRefGoogle Scholar
  51. 51.
    Young, K.K.: Short-channel effect in fully depleted SOI MOSFET’s. IEEE Trans. Electron Devices 36(2), 399 (1989)CrossRefGoogle Scholar
  52. 52.
    ATLAS User Manual: Device Simulation Software (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Advanced Automatic and Analysis of Systems (LAAAS), Department of ElectronicsUniversity of Batna2BatnaAlgeria

Personalised recommendations