Effect of temperature on the performance analysis of MLGNR interconnects

  • Tajinder Kaur
  • Mayank Kumar Rai
  • Rajesh Khanna


Multi-layer graphene nanoribbons (MLGNR) have been proposed as a possible interconnect material. Based on an equivalent single-conductor model of an intercalation-doped MLGNR (ID-MLGNR) interconnect, along with mixed carbon-nanotube bundle (MCB) interconnects, a comparative temperature-dependent study is performed with regard to their distributed circuit parameters and signal transmission performance in terms of delay, power dissipation, and power–delay product (PDP) at the global domain of interconnects. A similar analysis is carried out for copper (Cu) interconnects, and the results are compared with ID-MLGNR and MCB interconnects at the 14-nm technology node. Four different structures of MCB (MCBs 1–4), with and without tunneling effects, are considered here. The SPICE simulation results reveal that for 1-mm-long interconnects, stage-2 AsF5 ID-MLGNR with nearly specular edges have lower delay, power dissipation, and PDP in comparison to MCBs (1–4) with tunneling effects and conventional Cu interconnects over a temperature range of 300 to 500 K. With regard to propagation delay and power dissipation, it has also been shown that MCB interconnects with non-consideration of tunneling effects outperform MCB interconnects with tunneling effects. Additionally, among the MCB (1–4) structures, MCB-1 consistently has lower delay within a temperature range from 300 to 500 K. Moreover, an average improvement in relative delay of 23.78% and 37.66% is observed for ID-MLGNR interconnects in comparison with the best delay structure of MCBs, i.e. MCB-1, and Cu interconnects, respectively, over a temperature range of 300 to 500 K. It is proposed that, in the context of reduced propagation delay, power dissipation, and PDP, ID-MLGNR interconnects hold greater promise than MCB and Cu interconnects.


MLGNR Mixed carbon-nanotube bundle (MCB) Power dissipation Equivalent single-conductor (ESC) model VLSI-interconnects 


  1. 1.
    Srivastava, N., Banerjee, K.: Performance analysis of carbon nanotube interconnects for VLSI applications. In Proceedings of the 2005 IEEE/ACM International Conference on Computer-Aided Design, pp. 383–390. IEEE Computer Society (2005)Google Scholar
  2. 2.
    Hosseini, A., Shabro, V.: Thermally-aware modeling and performance evaluation for single-walled carbon nanotube-based interconnects for future high performance integrated circuits. Microelectron. Eng. 87(10), 1955–1962 (2010)CrossRefGoogle Scholar
  3. 3.
    Rai, M.K., Sarkar, S.: Temperature dependent crosstalk analysis in coupled single-walled carbon nanotube (SWCNT) bundle interconnects. Int. J. Circuit Theory Appl. 43(10), 1367–1378 (2015)CrossRefGoogle Scholar
  4. 4.
    Bolotin, K.I., Sikes, K.J., Hone, J., Stormer, H.L., Kim, P.: Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 101(9), 096802 (2008)CrossRefGoogle Scholar
  5. 5.
    Cui, J.P., Zhao, W.S., Yin, W.Y., Hu, J.: Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat. 54(1), 126–132 (2012)CrossRefGoogle Scholar
  6. 6.
    Xu, C., Li, H., Banerjee, K.: Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Dev. 56(8), 1567–1578 (2009)CrossRefGoogle Scholar
  7. 7.
    Rai, M.K., Kaushik, B.K., Sarkar, S.: Thermally aware performance analysis of single-walled carbon nanotube bundle as VLSI interconnects. J. Comput. Electron. 15(2), 407–419 (2016)CrossRefGoogle Scholar
  8. 8.
    Naeemi, A., Meindl, J.D.: Compact physics-based circuit models for graphene nanoribbon interconnects. IEEE Trans. Electron Dev. 56(9), 1822–1833 (2009)CrossRefGoogle Scholar
  9. 9.
    Nishad, A.K., Sharma, R.: Analytical time-domain models for performance optimization of multilayer GNR interconnects. IEEE J. Sel. Top. Quantum Electron. 20(1), 17–24 (2014)CrossRefGoogle Scholar
  10. 10.
    Qian, L., Xia, Y., Shi, G.: Study of crosstalk effect on the propagation characteristics of coupled MLGNR interconnects. IEEE Trans. Nanotechnol. 15(5), 810–819 (2016)CrossRefGoogle Scholar
  11. 11.
    Rossi, D., Cazeaux, J.M., Metra, C., Lombardi, F.: Modeling crosstalk effects in CNT bus architectures. IEEE Trans. Nanotechnol. 6(2), 133–145 (2007)CrossRefGoogle Scholar
  12. 12.
    Majumder, M.K., Pandya, N.D., Kaushik, B.K., Manhas, S.K.: Analysis of MWCNT and bundled SWCNT interconnects: impact on crosstalk and area. IEEE Electron Dev. Lett. 33(8), 1180–1182 (2012)CrossRefGoogle Scholar
  13. 13.
    Zhu, L., Xu, J., Xiu, Y., Sun, Y., Hess, D.W., Wong, C.P.: Growth and electrical characterization of high-aspect-ratio carbon nanotube arrays. Carbon 44(2), 253–258 (2006)CrossRefGoogle Scholar
  14. 14.
    Cheung, C.L., Kurtz, A., Park, H., Lieber, C.M.: Diameter-controlled synthesis of carbon nanotubes. J. Phys. Chem. B 106(10), 2429–2433 (2002)CrossRefGoogle Scholar
  15. 15.
    Majumder, M.K., Kaushik, B.K., Manhas, S.K.: Analysis of delay and dynamic crosstalk in bundled carbon nanotube interconnects. IEEE Trans. Electromagn. Compat. 56(6), 1666–1673 (2014)CrossRefGoogle Scholar
  16. 16.
    Pandya, N.D., Majumder, M.K., Kaushik, B.K., Manhas, S.K.: Performance comparison of mixed CNT bundle in global VLSI interconnect. In: 2012 International Conference on Communication Systems and Network Technologies (CSNT), pp. 790–793. IEEE (2012)Google Scholar
  17. 17.
    Majumder, M.K., Kaushik, B.K., Manhas, S.K.: Analysis of mixed CNT bundle interconnects: impact on delay and power dissipation. In: 2012 5th International Conference on Computers and Devices for Communication (CODEC), (pp. 1–4). IEEE (2012)Google Scholar
  18. 18.
    Zhao, W.S., Yin, W.Y.: Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat. 56(3), 638–645 (2014)CrossRefGoogle Scholar
  19. 19.
    Shioya, J., Matsubara, H., Murakami, S.: Properties of AsF5-intercalated vapor-grown graphite. Synth. Met. 14(1–2), 113–123 (1986)CrossRefGoogle Scholar
  20. 20.
    Liao, A.D., Wu, J.Z., Wang, X., Tahy, K., Jena, D., Dai, H., Pop, E.: Thermally limited current carrying ability of graphene nanoribbons. Phys. Rev. Lett. 106(25), 256801 (2011)CrossRefGoogle Scholar
  21. 21.
    Chen, X., Seo, D.H., Seo, S., Chung, H., Wong, H.S.P.: Graphene interconnect lifetime: a reliability analysis. IEEE Electron Dev. Lett. 33(11), 1604–1606 (2012)CrossRefGoogle Scholar
  22. 22.
    Jiang, J., Kang, J., Cao, W., Xie, X., Zhang, H., Chu, J.H., Banerjee, K.: Intercalation doped multilayer-graphene-nanoribbons for next-generation interconnects. Nano Lett. 17(3), 1482–1488 (2017)CrossRefGoogle Scholar
  23. 23.
    Jiang, J., Kang, J., Banerjee, K.: Characterization of self-heating and current-carrying capacity of intercalation doped graphene-nanoribbon interconnects. In: 2017 IEEE International on Reliability Physics Symposium (IRPS), pp. 6B-1. IEEE (2017)Google Scholar
  24. 24.
    Rai, M.K., Garg, H., Kaushik, B.K.: Temperature-dependent modeling and crosstalk analysis in mixed carbon nanotube bundle interconnects. J. Electron. Mater. 46(8), 5324–5337 (2017)CrossRefGoogle Scholar
  25. 25.
    Rai, M.K., Arora, S., Kaushik, B.K.: Temperature-dependent modeling and performance analysis of coupled MLGNR interconnects. Int. J. Circuit Theory Appl. 46(2), 299–312 (2018)CrossRefGoogle Scholar
  26. 26.
    Pop, E., Mann, D., Reifenberg, J., Goodson, K., Dai, H.: Electro-thermal transport in metallic single-wall carbon nanotubes for interconnect applications. In: IEEE International Electron Devices Meeting. IEDM Technical Digest, pp. 4–7. IEEE (2005)Google Scholar
  27. 27.
    Nasiri, S.H., Faez, R., Moravvej-Farshi, M.K.: Compact formulae for number of conduction channels in various types of graphene nanoribbons at various temperatures. Mod. Phys. Lett. B 26(01), 1150004 (2012)CrossRefzbMATHGoogle Scholar
  28. 28.
    Perebeinos, V., Avouris, P.: Inelastic scattering and current saturation in graphene. Phys. Rev. B 81(19), 195442 (2010)CrossRefGoogle Scholar
  29. 29.
    Rakheja, S., Kumar, V., Naeemi, A.: Evaluation of the potential performance of graphene nanoribbons as on-chip interconnects. Proc. IEEE 101(7), 1740–1765 (2013)CrossRefGoogle Scholar
  30. 30.
    Perebeinos, V., Avouris, P.: Current saturation and surface polar phonon scattering in graphene. arXiv preprint arXiv:0910.4665 (2009)
  31. 31.
    Li, H., Yin, W.Y., Banerjee, K., Mao, J.F.: Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects. IEEE Trans. Electron Dev. 55(6), 1328–1337 (2008)CrossRefGoogle Scholar
  32. 32.
    Kumar, V.R., Majumder, M.K., Kukkam, N.R., Kaushik, B.K.: Time and frequency domain analysis of MLGNR interconnects. IEEE Trans. Nanotechnol. 14(3), 484–492 (2015)CrossRefGoogle Scholar
  33. 33.
    Burke, P.J.: Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol. 99(3), 129–144 (2002)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Sarto, M.S., Tamburrano, A.: Single-conductor transmission-line model of multiwall carbon nanotubes. IEEE Trans. Nanotechnol. 9(1), 82–92 (2010)CrossRefGoogle Scholar
  35. 35.
    D’Amore, M., Sarto, M.S., Tamburrano, A.: Fast transient analysis of next-generation interconnects based on carbon nanotubes. IEEE Trans. Electromagn. Compat. 52(2), 496–503 (2010)CrossRefGoogle Scholar
  36. 36.
    Liang, F., Wang, G., Lin, H.: Modeling of crosstalk effects in multiwall carbon nanotube interconnects. IEEE Trans. Electromagn. Compat. 54(1), 133–139 (2012)CrossRefGoogle Scholar
  37. 37.
    Naeemi, A., Meindl, J.D.: Compact physical models for multiwall carbon-nanotube interconnects. IEEE Electron Dev. Lett. 27(5), 338–340 (2006)CrossRefGoogle Scholar
  38. 38.
    Naeemi, A., Meindl, J.D.: Physical modeling of temperature coefficient of resistance for single-and multi-wall carbon nanotube interconnects. IEEE Electron Dev. Lett. 28(2), 135–138 (2007)CrossRefGoogle Scholar
  39. 39.
    Naeemi, A., Meindl, J.D.: Performance modeling for single-and multiwall carbon nanotubes as signal and power interconnects in gigascale systems. IEEE Trans. Electron Dev. 55(10), 2574–2582 (2008)CrossRefGoogle Scholar
  40. 40.
    Hanlon, L.R., Falardeau, E.R., Fischer, J.E.: Metallic reflectance of AsF5-graphite intercalation compounds. Solid State Commun. 24(5), 377–381 (1977)CrossRefGoogle Scholar
  41. 41.
    Chen, X., Lee, K.J., Akinwande, D., Close, G.F., Yasuda, S., Paul, B., Wong, H.S.P.: High-speed graphene interconnects monolithically integrated with CMOS ring oscillators operating at 1.3 GHz. In: 2009 IEEE International Electron Devices Meeting (IEDM), pp. 1–4. IEEE (2009)Google Scholar
  42. 42.
    Katagiri, M., Miyazaki, H., Yamazaki, Y., Zhang, L., Matsumoto, T., Wada, M., Sakai, T.: Electrical properties of multilayer graphene interconnects prepared by chemical vapor deposition. In: 2013 IEEE International on Interconnect Technology Conference (IITC), pp. 1–3. IEEE (2013)Google Scholar
  43. 43.
    International Technical Roadmap for Semiconductors (ITRS), 2013. [Online].
  44. 44.
    Sharma, P., Kaur, I., Gupta, S., Singh, S.: Effect of temperature on the conductance of GNRFET. In: AIP Conference Proceedings, vol. 1724, No. 1, p. 020075. AIP Publishing (2016)Google Scholar
  45. 45.
    Hwang, W.S., Zhao, P., Tahy, K., Nyakiti, L.O., Wheeler, V.D., Myers-Ward, R.L., Xing, H.: Graphene nanoribbon field-effect transistors on wafer-scale epitaxial graphene on SiC substrates. APL Mater. 3(1), 011101 (2015)CrossRefGoogle Scholar
  46. 46.
    Chen, Y.Y., Rogachev, A., Sangai, A., Iannaccone, G., Fiori, G., Chen, D.: A SPICE-compatible model of graphene nano-ribbon field-effect transistors enabling circuit-level delay and power analysis under process variation. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 1789–1794. EDA Consortium (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tajinder Kaur
    • 1
  • Mayank Kumar Rai
    • 1
  • Rajesh Khanna
    • 1
  1. 1.Department of Electronics and Communication EngineeringThapar Institute of Engineering and TechnologyPatialaIndia

Personalised recommendations